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Abstract: A major goal of modern medicine is increasing patient
specificity so that the right treatment is administered to the right
patient at the right time with the right dose. While current cancer
studies have largely focused on identification of genetic or epi-
genetic properties of tumor cells, emerging evidence has clearly
demonstrated substantial genetic heterogeneity between tumors in
the same patient and within subclones of a single tumor. Thus,
molecular analysis from populations of cells (either a whole tumor
or small biopsy of that tumor) is, at best, an incomplete repre-
sentation of the underlying biology. These observations indicate a
significant need to define intratumoral evolutionary dynamics that
yield the observed spatial variations in cellular properties. It is
generally accepted that genetic heterogeneity among cancer cells is
a manifestation of intratumoral evolution, and this is typically
viewed as a consequence of random mutations generated by
genomic instability within the cancer cells. We suggest that this
represents an incomplete view of Darwinian dynamics, which
typically are governed by phenotypic variations in response to
spatial and temporal heterogeneity in environmental selection
forces. We propose that pathologic feature analysis can provide
precise information regarding regional variations in environmental
selection forces and phenotypic adaptations. These observations
can be integrated using quantitative, spatially explicit methods
developed in landscape ecology to interrogate heterogenous bio-
logical processes in tumors within individual patients. The ability
to investigate tumor heterogeneity has been shown to inform
physicians regarding critical aspects of cancer progression includ-
ing invasion, metastasis, drug resistance, and disease relapse.
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Personalized medicine aims to use patient-specific metrics
to provide an optimal cancer therapy customized for

each individual patient.1–3 Massive biobanks of patient
tissues provide extensive libraries of genetic data that can
be evaluated against targeted therapies.4 However, it is

becoming clear that discriminating and cataloging genomic
libraries of patient samples falls short, due in part to
intratumoral heterogeneity. Personalized cancer treatments
will require more than just matching a patient’s tumor
genomics with that of a central library.

Detailed molecular data from multiple regions in the
same tumor reveal striking variations. Distinct populations
of tumor cells displaying different biomarkers and gene
signatures appear to coexist.5 This invites a greater under-
standing of tumor heterogeneity at molecular, cellular, and
tissue temporal and spatial scales.6,7 Unfortunately, current
proteomic and genomic methods fail to wholly address
heterogeneity. Current techniques rely on single sample that
homogenizes into large numbers of undoubtedly variable
cells. It is likely that even these “averaged” data will differ
from region to region within the same tumor, and certainly
between tumor sites in the same patient.8–10 Batching and
averaging information from millions of cells is likely lim-
iting for developing personalized cancer treatments.

We propose extending pathology to identify, classify,
and quantify cell to cell, region to region, and tumor to
tumor heterogeneities. Such pathology metrics can supple-
ment current efforts toward personalized medicine. We
propose analyzing histologic samples by using the theories,
tools, and experiences of landscape ecology.

Landscape ecology measures, analyzes, and studies the
spatial and temporal heterogeneities of natural ecosys-
tems.11 Since the pioneering work of Carl Troll in 1939,
landscape ecologists have used maps, vegetation, and geo-
logic surveys, photographic images and, most recently,
satellite imaging to study the interactions between organ-
isms with their environments. While maps are not the only
tools of landscape ecology, these data acquisition methods
empower investigators to study spatially explicit biological
interactions. Together with information about organisms
and the patterns of the organism’s environment, inves-
tigators can interrogate habitat change, conservation, and
other ecological interactions. We propose that many of
these same principles and techniques can be developed and
applied to create an emerging field of “landscape patho-
logy.” While there are many definitions of “landscape,” we
are using the definition of landscape from Turner,12 which
states that “a landscape is an area that is spatially hetero-
geneous in at least one factor of interest.” Thus, we define
landscape pathology as a proposed discipline to apply
quantitative, spatially explicit methods from landscape
ecology to define the heterogenous biological processes of
cancer cells (the “organism”) in histologic samples (the
“habitat”). Using landscape pathology methods can help
investigators gain a more precise understanding of local
selection forces and, in turn, adaptations within

From the Departments of *Analytic Microscopy; zIntegrated Mathe-
matical Oncology; 8Radiology; zAnatomic Pathology, H. Lee
Moffitt Cancer Center and Research Institute; yDepartment of
Oncologic Sciences, College of Medicine, University of South
Florida, Tampa, FL; and wDepartment of Biological Sciences,
University of Chicago at Illinois, Chicago, IL.

Supported in part by the Analytic Microscopy Core Facility at the H.
Lee Moffitt Cancer Center & Research Institute, an NCI-designated
Comprehensive Cancer Center (P30-CA076292). This work was
also made possible by pilot funding from the NIH/NCI PS-OC
grant U54CA143970.

The authors have no conflicts of interest to disclose
Reprints: Mark Lloyd, MS, Department of Biological Sciences, Uni-

versity of Chicago at Illinois, 845 West Taylor Street, Chicago, IL
60607 (e-mail: mlloyd8@uic.edu).

Copyright r 2015 Wolters Kluwer Health, Inc. All rights reserved.

REVIEW ARTICLE

Adv Anat Pathol � Volume 22, Number 4, July 2015 www.anatomicpathology.com | 267

mailto:mlloyd8@uic.edu


Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

subpopulations of cancer cells in a tumor, which may be
clinically important in understanding disease progression,
treatment response, and relapse.

Figures 1A and B provide an example of this concept.
Here, hematoxylin and eosin–stained histology slides, the
standard for primary diagnoses in cancer, may be com-
pared with traditional landscapes commonly viewed as
maps or satellite imagery. Regional classifications, spatially
explicit analyses, and quantifiable metrics common in
ecology can add to the pathologist’s clinical toolbox.13,14

These classifications and analyses will provide pathologists
with the ability to quantify morphologic heterogeneity
within a tissue section with exquisite precision. This in turn
will empower pathologists with the ability to rapidly iden-
tify areas of necrosis, high rates of proliferation, high
incidences of inflammatory response, regions of high or low
nuclear pleomorphism, and similar clinically pertinent
morphologic features.

THE CLINICAL PROBLEM
Intratumoral heterogeneity manifests in at least 3

general ways:
(1) Mixtures of normal and malignant cellular populations

within tissue. Pathologists typically describe this varia-
tion in qualitative terms. The pathologists will, for
example, recognize benign cells such as fibroblasts,
lymphocytic, and epithelial cells. They will also identify
inflammation, necrosis, hyperplasia, preneoplastic dis-
ease, benign tumors, and malignant cancers.15

(2) Variations in the microenvironment. Blood flow in
tumors typically results in temporal and spatial
variations in concentrations of growth factors, sub-
strate, and metabolite concentrations. These in turn
manifest as regions of necrosis and variable cell density.
Each of these variations selects for the adaptive
evolution of local tumor populations which can be
spatially evaluated in a quantitative manner including,
but not limited to spatial evaluation of clustering
populations or proliferative phenotypes.16

(3) Genetic heterogeneity. Increased mutation rate owing to
intracellular properties such as DNA repair or geno-
toxic environmental factors such as hypoxia appear to
continuously generate new mutant cells. Cells carrying
these mutations, in turn, proliferate if the phenotypic
expression of that mutation confers an increased fitness.
An example is the perpetuation of the mutator
phenotype.17

In current practice, pathologists attempt to overcome
this heterogeneity by selecting regions of tissues for genetic
analysis that minimizes normal or necrotic cells. This is
commonly performed using a slide marker to draw directly
on the glass slide in an effort to select regions of high tumor
cellularity or conversely, to scratch out large regions that
are not of interest including normal margins or necrosis. In
this way the technique currently “homogenizes” the sam-
ples and averages any downstream information that may be
useful in evaluating intratumoral heterogeneity.17

We propose that current methods for personalized
cancer therapy—treating target lesions as a single hetero-
genous genetic sample—are not wholly adequate. This is
primarily because evolutionary strategies or adaptations
often involve several phenotypic changes that in turn can be
achieved through an even larger number of genetic path-
ways. That is, evolution directly acts on cellular phenotypes

and not genotypes. In fact, Darwinian dynamics, which can
be described as dynamics of systems which drive fitness by
natural selection, are manifested in phenotypic changes.18

Second, clear evidence indicates that extensive genetic het-
erogeneity exists within cancer cells in the same tumor.5

Averaging or lumping tumor heterogeneity into single
metrics or qualities may mask key aspects of the tumor’s
progression and state, and unwittingly “throw away” val-
uable information on the heterogeneity itself and what it
indicates.19 We suggest embracing the information content
of spatially explicit considerations of cellular, micro-
environmental, and regional heterogeneities. The ability to
investigate tumor heterogeneity has been shown to inform
physicians regarding critical aspects of cancer progression
including invasion, metastasis, drug resistance, and disease
relapse.20–23

It is important to understand why intratumoral het-
erogeneity is clinically important. Clinicians have deep
experience with disease relapse, changes in treatment
effectiveness, and hormone status or other clinically rele-
vant deviations in the greater cancer cell population. We
propose that the described changes in the patient’s overall
disease state are due in significant part to cancer cell pop-
ulations changing as different subpopulations of cancer
cells evolve toward increased fitness by natural selection.
Intratumoral heterogenous subpopulations of different
cellular phenotypes in a single tumor make these Darwinian
dynamics possible, which in turn makes treating cancer a
moving target.

Cancers are complex but not hopelessly so. Tumors
can be understood by characterizing and embracing their
underlying ecological and evolutionary dynamics, including
both spatial and temporal variability. Fortunately, patho-
logists have been observing and quantifying variations
within the morphology of cancer cells for well over a
century and are well positioned to visually evaluate heter-
ogeneity across histologic samples.24 We propose that the
challenges are 3-fold: identification of cellular heterogeneity
must become (1) regionally explicit, (2) quantitative and
reproducible, and (3) high throughput.

Until recently, these challenges would be insurmount-
able due to the time consuming and subjective manual
screening of tumor heterogeneity.25 However, with the advent
of whole-slide imaging technology and recent improvements
in pattern recognition software, it is possible to computa-
tionally evaluate millions of cells in minutes and hundreds of
patients in hours to days.26 Whole-slide imaging allows high
resolution and high throughput image acquisition for every
cell within a given tissue sample.27 There are a number of
advantages of these technologies including low costs, high
throughputs, quantitative results, and rapid evaluation of
tissue samples, which are already routinely produced in every
hospital within the United States and the majority of similar
centers around the world.13

While current imaging technology and methods are nec-
essary, it is not sufficient to visually investigate spatial dis-
tribution of cells and microenvironmental properties in patient
samples. We propose that the discipline of landscape ecology,
with its associated tools and theories, can be used to evaluate
the relationship between pattern and process in pathology.
While pathology is equipped to identify patterns in tumors,
landscape ecology provides the tools to evaluate these patterns
and understand the underlying biological relationships.28–30

Together, quantifiable metrics of digital pathology and land-
scape ecology can contribute to personalized medicine. Thus,
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“landscape pathology” has the potential to provide new
information regarding patients’ intratumoral heterogeneity.

BENEFITS OF LANDSCAPE ECOLOGY IN
PATHOLOGY

Landscape ecologists and pathologists work on a
spectrum of scales which spans from 106 to 10�6m, yet the
substrates on which both groups work is identical. In
modern studies, these are most frequently digital images,
whether from a satellite or a microscope lens. Whole-slide
microscope images are the maps with which landscape
pathologists will work. Distinctive heterogenous regions
can be identified along with their relative contribution to
the total tumor volume as well as their interactions with
each other. This is done by using segmentation and classi-
fication methods14 to identify distinct regions in the tumor
and to allow examination of their boundaries.

The first consideration for segmentation and classi-
fication in tumors may be the criteria with which regions
will be identified. In landscape ecology, “patches of the land
cover region” can be wetlands, clusters of trees, or any
relatively homogenous area of interest. Habitat patches are
identified in a number of different ways including reflec-
tance data, time series of vegetation activity estimated from
the reflectance data, estimates of surface roughness/vertical
structure from RADAR or LiDAR sensors, or surface
temperature from thermal remote sensing, to name a
few.31–33 These variables, which a landscape ecologist may
use, might then be chosen to classify habitat using a number
of pixel-based or object-based methods.34,35 Pixel-based
and object-based classification methods are also common in
the current standards of digital pathology analysis.36,37 In
fact, pathologists now have a plethora of commercially
available image analysis tools to segment objects (ie,
delineate patches) and classify spatially explicit regions (ie,
identify habitats) by examining vascular density, relative

FIGURE 1. Hematoxylin and eosin (H&E)-stained histology slides may be compared with traditional landscapes. (A) A standard his-
tologic H&E image of an invasive tumor compared with (B) a standard satellite image of the Blue Ridge Mountain range in Shenandoah,
Virginia. (C) Regional tissue classification of viable tumor (red), mild necrosis (purple), necrosis (blue), and other nontarget tissue
(green); (D) compared with random forest classification in variant habitats which seems to correlate most with increasing elevation from
green to blue to red to purple. (E) Feature data are displayed in the Z dimension to create a topographical map of the H&E relative to the
morphologic feature being evaluated (red: blue color layer ratio); (F) 3D topographic representation of the Shenandoah habitat site
demonstrating heterogenous elevation. (G) Topographical heatmap is used to rapidly identify regions with like feature characteristics for
this H&E image. Top scale bars (A, C, E) represent 300mm and the top insert map scale bar is 3 mm; bottom scale bars (B, D, F) represent
3000 m and the bottom insert scale bar is 100 km. Credit Google Earth for all satellite imagery. The white arrow indicates North. The red
asterisk is the location of Washington, DC.
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cell viability, and necrosis or immunohistochemical evi-
dence of regional oxygen concentration such as HIF-1a
expression.38

As demonstrated in Figures 1C and D, histologic pattern
recognition utilizes random forest classification to identify color
and texture variation in both image types through a commer-
cially available image analysis platform (Definiens, Munich,
Germany). By teaching the algorithm to recognize homogenous
regions, a computer can reliably identify “patches” in a robust
and repeatable way. Individual physical or molecular features
derived from the images can be used to catalog morphologically
homogenous cell populations and relationships between cells or
regions and establish testable hypotheses to further interrogate
processes of the system.39 Similar to the patch-matrix (also
sometimes referred to as patch mosaic) paradigm in landscape
ecology practices, histologic pattern recognition also creates and
thus defines a border between tissue regions.40 Of course,
alternatives in landscape ecology to evaluate spatial hetero-
geneity such as gradient paradigms are also used.41

Qualitatively, pathologists could then begin to evaluate
the regions of interest with these or other classification
methods of patches. With quantitative image analysis and
statistical methods, pathologists can quantify precise metrics
of the regions.42 Initially these metrics might include area,
intensity, roundness, and other physical features.43 However,
pathology can learn from landscape ecology that patches can
form mosaics.44 They can demonstrate edge effects and they
can be clustered.45,46 These features of tissue architecture can
also be quantitatively measured and used to evaluate the
disease at a mesoscopic scale (200mm to 2mm). For example,
the architecture of prostate glands and their orientation have
been shown to be informative of patient prognosis47 and
retained architecture in breast cancer tissues has been shown
to inhibit malignant progression.48

Multiple regions or patches typically exist in a land-
scape. We expect that similar variations will be found in
most clinical cancers using the tools for landscape patho-
logy.49,50 In turn, this will allow the intratumoral hetero-
geneity to be characterized, quantified, and ultimately
compared. A way in which the heterogeneity may be
characterized can include habitats of vascular regions51–53

or regions of increased lymphocytic response.54 Each
quantitative method cited includes clinically meaningful
prognostic or predictive value.

LANDSCAPE ECOLOGY APPLICATIONS IN
PATHOLOGY

Evaluation of the consequences of having multiple sub-
populations of cells in specific patterns in a tumor will require
learning from landscape ecology, which focuses on the feed-
back loops between patterns and processes. Patterns observed
in pathology include points of blood vessels or ectopic lymph
nodes, expression levels of biomarkers such as Her2Nue, or
regions of high proliferation. Each of these patterns has
diagnostic and prognostic value to the pathologist. Here we
describe 4 analyses and their utility to pathology.

The first is point patterns, which consist of point loca-
tions distributed in 2-dimensional space. Landscape ecologists
would characterize these as random, regular, or clustered. In
pathology, point pattern analysis would allow quantification
of the spatial distribution of some cellular or tissue feature (ie,
nuclei) in the tumor. Metrics such as Ripley’s K function can
be used to compare one region of the tumor to another.55,56

Specifically, Ripley’s K is a statistical metric for quantifying

deviations from spatial randomness and has been used in
mammography as a classification method.57 Point patterns in a
histologic section have been shown to be important at the
histologic scale in interrogating aspects of the environment
including lymphocytic invasion, cancer-associated fibroblastic
localization, or the distance from vasculature to cancer cell
populations.58,59 This information could help oncologists most
carefully predict response to specific therapies.

Second, regional variations in necrosis, ectopic lymph
nodes, or other intratumoral features can be described as
values of the number of cells, size of necrotic regions, or
distribution of lymphocytes in space. In this example,
measures of spatial autocorrelation, such as Moran’s I,60,61

can reveal the scale and degree of dependency among
observations. This is, for example, important to be useful to
quantify dispersal (migration) of specific cell populations by
evaluating the pH of the microenvironment.62 Specifically,
the location of cancer cells can be quantified to better
understand if cancer cells are moving together in regions in
which acid-mediated invasion provides spaces of increased
selective advantage or if invasion is more correlated with
random Brownian motion.

These metrics may also be useful in predicting response
to specific treatments such as hypoxia-activated prodrugs or
predicting prognosis of the patient’s own immune response.54

Specifically, the spatial correlation of cancer cell populations
is useful in understanding the overall heterogenous organ-
ization of cancer cells. That is to say, cancer is not randomly
oriented or unorganized, but rather is a function of selective
Darwinian dynamics of an adaptive landscape which may be
measured and investigated. Furthermore, quantification of
spatial relationships among tumor cell clusters of networked
populations in relation to these environmental responses can
be used to reveal prognostic indicators such as increased
nuclear pleomorphism in regions of increased vascularity.63,64

Thirdly, distance measures are frequently used tools to
collect quantitative data in histologic images.65 For example,
number of interactions with neighbors in a nearest neighbor
analysis to discern morphologic or other similarities between
nearby individuals can provide information about the size
and connectivity of pockets of cells with distinct morpholo-
gies. The spatial identification of vessels and ectopic lymph
nodes may have near-term clinical implications as key
pathologic findings and progression projections.66

Finally, it is likely that landscape pathology, as in
landscape ecology, will require mathematical models for
simplifying and interrogating complex ecological and evo-
lutionary systems.67 Ecologists and pathologists alike use
models to expand testing beyond the time, expense, and
often feasibility of experimental designs.68,69 Mathematical
models have also had great impact in cancer research in
recent years.70–72 Spatial models in particular have a clear
role in interrogating pathologic samples.73 One such model
not yet translated to medicine deals with ecological niche
modeling.74,75 Here niches are defined as the geographic
areas necessary for a species to survive. This approach uses
matching of individual traits in a species to available
resources on the landscape. Furthermore, the niche may
limit the distribution of invasive species to a particular
region of the landscape.76 These models are often also
referred to as bioclimatic envelop models and species dis-
tribution models. Here we draw striking parallels to cancer,
which grows asymmetrically due to what has been proposed
as localized niches of heterogenous microenvironmental
resources.53,77 Also interesting is the direct link of the
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ecological niche model to spatial distribution of resources
within regions of a system.78,79 These models have been
highly successful in predicting invasive species spread into
new regions of the globe.80 These concepts may be mapped
in landscape pathology images in 3 dimensions as a topo-
graphical representation of an histologic image where the
third dimension is a measure of multiplexed features of
tissues or cells including glucose levels, pH, physical space,
and oxygen concentrations much like a number of variables
including elevation, rainfall, food sources, and other con-
siderations might be used in niche models (Figs. 1G, H).

SUMMARY AND FUTURE DIRECTIONS
In summary, we propose that pathologists have the

opportunity to define the Darwinian dynamics within cancers
through application of methods and principles of landscape
ecology. Using automated image analysis techniques much
more precise information can be investigated regarding intra-
tumoral heterogeneity. Furthermore, spatial heterogeneity in
these tissue “habitats” can be measured and used to define
both prognosis and optimal therapeutic strategies. The latter
will require transition from targeted therapies based on
genomic analysis of small tumor samples to environmentally
and phenotypically defined targets based on comprehensive
knowledge of the spatial variations throughout the tumor.
This is facilitated by automated, high throughput image
analysis technologies to identify variations in the physical or
molecular metrics of cells and environmental properties.

This approach will require quantitative, reproducible,
and comprehensive analysis of cancer as an ecological
system. Evaluation of these data as prognostic and pre-
dictive biomarkers will require significant effort. However,
we propose that this approach to understanding and
quantifying intratumoral heterogeneity is necessary to
achieve current goals of personalized cancer therapy.35
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65. González-Garcı́a I, Solé RV, Costa J. Metapopulation
dynamics and spatial heterogeneity in cancer. Proc Natl Acad
Sci U S A. 2002;99:13085–13089.

66. Epstein JI, Pizov G, Walsh PC. Correlation of pathologic
findings with progression after radical retropubic prostatec-
tomy. Cancer. 1993;71(), 3582–3593.

67. Johnson JB, Omland KS. Model selection in ecology and
evolution. Trends Ecol Evol. 2004;19:101–108.

68. Haslberger A, Varga F, Karlic H. Recursive causality in
evolution: a model for epigenetic mechanisms in cancer
development. Med Hypotheses. 2006;67:1448–1454.
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