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a b s t r a c t

Cities are often substantially warmer than their surrounding rural areas. This ‘urban heat island effect’
can negatively affect the health of urban residents, increase energy usage, and alter ecological processes.
While the effect of land use and land cover on urban heat islands has been extensively studied, little is
known about the role of vegetation volume or built-area volume about this phenomenon. We ask
whether the 3-dimensional structure of urban landscapes influences variations in temperature across a
city. Using heights-above-ground information derived from LiDAR data and the Normalized Difference
Vegetation Index (NDVI) calculated from multispectral (4 band: Blue, Green, Red, and Near Infrared)
aerial images, we estimated vegetation volume and built-area volume (non-vegetated) in Chicago, Illinois
(USA). Daily minimum temperature data were obtained from 36 weather stations for summer 2011. The
differences in urban air temperature across the study area were as large as 3 �C. Maximum likelihood
models indicated that a combination of NDVI and vegetation volume best predicted nighttime temper-
ature in Chicago, and that vegetation growing within 250e500 m of the weather station was most
influential. Our results indicate that vegetation in “the matrix”, i.e. the area outside parks and preserves,
is important in temperature mitigation since the majority of the vegetation volume in the study area
occurs within residential, commercial/industrial, and institutional land uses. However, open space, which
covers only 15% of the study area, has nearly as much total vegetation volume as residential land, which
covers 61% of the study area. Clearly, both large wooded parks within a city and large trees scattered
across residential areas are needed to best mitigate the urban heat island effect.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Urban heat islands affect urban settlements worldwide. The
degree to which the temperature in the city is augmented
compared to its rural surroundings depends on regional context,
such as the biome wherein the city is located and the city's size
(Imhoff, Zhang, Wolfe, & Bounoua, 2010). Other factors, such as
impervious surface extent, vegetation cover, and anthropogenic
activities, are important too (Peng et al. 2012). In a study of 38 U.S.
cities, yearly urban temperatures were on average 2.9 �C warmer
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than surrounding areas in all biomes except those with arid and
semiarid climates (Imhoff et al. 2010). The effect is most pro-
nounced on clear, still nights in the summer and has been
detected both in surface and air temperatures (Voogt & Oke,
2003).

Urban heat islands can intensify summer heat waves, cause heat
stress, and worsen air pollution (Loughner et al., 2012). Chicago, in
particular, has suffered from heat waves, with the 1995 heat wave
being responsible for over 700 deaths, mostly among low-income
elderly individuals who did not have a strong social support sys-
tem (Klinenberg, 2002). Other studies have shown that the most
vulnerable members of society are also those most affected by
extreme heat events (Buyantuyev & Wu, 2010; Harlan, Brazel,
Prashad, Stefanov, & Larsen, 2006; Jenerette et al. 2007; Jenerette,
Harlan, Stefanov, & Martin, 2011).
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At the regional scale, it is well accepted that urban centers
tend to be warmer than rural areas, especially in summer (U.S.
EPA, 2015). More fine-scaled investigations, however, have
found that land cover configuration and composition affect
temperature, especially surface temperatures compared to air
temperatures (Buyantuyev & Wu, 2010; Connors, Galletti, &
Chow, 2013; Middel, H€ab, Brazel, Martin, & Guhathakurta, 2014;
Song, Du, Feng, & Guo, 2014; Myint, Wentz, Brazel, &
Quattrochi, 2013). This effect depends partially on air flow
through the urban area, which is a function of the spatial
arrangement, size, and density of objects (buildings, trees,
streets) in the city (Voogt & Oke, 2003). At the parcel scale, large
deciduous trees planted on the eastern, southern, or western
sides of homes decrease summer electricity use (Ko & Radke,
2013). One study (Ko & Radke, 2013), showed that the sum of
tree height within 18.3 m of the western side of a property (as
measured by LiDAR) decreased energy use the most, although
occupant behavior most affected home energy consumption.

Mitigating urban heat island effects, especially in the face of
climate change, is a goal for many municipalities (Akbari et al.
2008). Much research has focused on ascertaining the effect of
vegetation cover or impervious surface cover on temperature in
cities. Increased low albedo surfaces and impervious surfaces have
been linked to elevated surface (Buyantuyev & Wu, 2010; Imhoff
et al. 2010; Jenerette et al. 2007; Myint et al., 2013; Roth, Oke, &
Emery, 1989; Weng, Lu, & Schubring, 2004; Yuan & Bauer, 2007)
and air temperatures (Bowler, Buyung-Ali, Knight, & Pullin, 2010;
Coseo & Larsen, 2014; Harlan et al. 2006) in urban areas.

Maps of vegetation cover or impervious surface area are usually
derived from satellite imagery. Green space in particular is often
estimated by calculating Normalized Difference Vegetation Index
(NDVI) or Soil Adjusted Vegetation Index (SAVI). Since vegetation
provides evaporative surfaces, heat storage capacity (Gallo et al.
1993) and shading, it can influence temperatures. Skelhorn et al.
(2014) modeled surface and air temperature fluctuations in sub-
urban areas of Manchester UK according to various greening sce-
narios. They found that a 5% increase in mature tree cover, versus
hedges and young trees, decreased surface temperature by 1 �C and
0.5 �C respectively, while a 5% increase in grass cover increased
surface temperature by 0.6 �C. No changes in air temperature were
noted.

We estimated vegetation volume and built-area volume using
LiDAR and multispectral (Red, Green, Blue, and Near Infrared
bands) aerial images, and used weather station data from across
Cook County, Illinois (USA), to determine whether built-area
volume, vegetation volume (as a proxy for vegetation biomass),
or NDVI is a stronger predictor of summer air temperature.
Finally, we examined these relationships at 5 different scales
(with buffers around the weather station ranging from 100 m to
1000 m) to determine the extent of any effects of our response
variables on temperature.

2. Methods

2.1. Study area

In 2010, Cook County, Illinois (USA) had just over 5 million in-
habitants (2010 U.S. Census). The county covers almost 2448 km2

and borders Lake Michigan. Its climate is classified as humid con-
tinental, with four distinct seasons throughout the year. Cook
County is home to Chicago, the third largest city in the United States
in terms of population. In the Chicago region in 2010, there were an
estimated 157 million trees that accounted for 15.5% of the total
land cover, and 73.5% of these trees were less than 6 inches in
diameter (Nowak et al. 2013).
2.2. Sample locations

Within Cook County, we located thirty-nine weather stations
with nearly continuous data during our study period (Fig. 1). The
threeweather stations associatedwith the region's airports (O'Hare
International Airport, Chicago Midway International Airport, and
the Chicago Executive Airport) were removed from subsequent
analyses because of the unusually large amount of impervious
surface near the stations. Six weather stations were within 2 km of
each other, so we randomly removed three of them from subse-
quent analyses to prevent overlap of the buffers. Our final data set
comprises 33 weather stations, which serve as the center point for
the ensuing landscape analyses. The mean (standard deviation),
minimum, and maximum distance between nearest neighbor sites,
i.e. nearest pairs of weather stations, are 4.9 (3.0), 2.1, and 13.5 km,
respectively.

2.3. Temperature data

Minimum, maximum, and average daily temperatures for 2011
were downloaded from wunderground.com for the 33 Cook
County weather stations. We used data from summer months
(June 21 to September 21), as urban heat island effects are more
pronounced in the summer (Imhoff et al. 2010; Myint et al. 2013;
Yuan & Bauer, 2007). We used the daily minimum temperature as
a proxy for nighttime temperature. We calculated an average of
the daily minimum temperature over the three summer months.
The mean daily minimum temperature at each weather station
for summer 2011 was used as the response variable in our
models, and is hereafter referred to as mean nighttime
temperature.

We compared summer temperatures in 2011 to twenty year
normal temperatures to summarily examinewhether summer 2011
was a “typical summer” for our study region. The mean (low e

high) normal (1981e2010) temperatures from O'Hare Airport's
weather station (main airport situated at the North end of Cook
County, Illinois) for June, July, August, and September are 20.5
(14.5e26.5), 23.3 (17.7e28.9), 22.4 (17.2e27.2), and 18.1
(12.4e23.8� Celsius), respectively (http://www.sws.uiuc.edu/
atmos/statecli/General/chicago-climate-narrative.htm). Compara-
tively, the mean (low e high) temperature at the same weather
station for June, July, August, and September 2011 were 21.1
(15.6e26.7), 26.1 (21.1e31.7), 23.3 (17.8e28.3), and 16.7
(12.2e20.6� Celsius; wunderground.com/history/airport/KORD),
indicating that the summer of 2011 might have been slightly
warmer than the average summer.

2.4. Estimation of vegetation volume, built-area volume, and NDVI

LiDAR data over Cook County were downloaded from the Illinois
Height Modernization Program (ILHMP) web site. The LiDAR data
acquisition occurred in November 2008 and April 2009. While that
time of year is considered “leaf-off” in Cook County, LiDAR has been
shown to reliably detect tree tops (maximum height) in leaf-off
conditions, even for deciduous trees (Wasser, Day, Chasmer, &
Taylor, 2013). The average density of the point cloud data was
5.05 point/m2.

We adopted a 2D grid structure with 5 ft (1.5 m) spatial res-
olution for LiDAR data processing, so that each pixel had an
average point density of 11.8 points/pixel. First, the point cloud
data were classified into ground and non-ground points using
LasTools (http://www.cs.unc.edu/~isenburg/lastools/). Then, a
Digital Terrain Model (DTM) was generated by applying natural
neighbor interpolation to ground points only. We chose a natural
neighbor interpolation algorithm for DTM generation since it is
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Fig. 1. Vegetation Volume (m3), built-area volume (m3), and NDVI are shown for Cook County, Illinois, USA, in the top left, top right, and bottom right panels, respectively. The points
show the location of the weather stations used in this study and are color coded according to the mean temperature (�C) in the summer of 2011. In the top left panel, a box is drawn
around one of the weather stations (indicated by an arrow). For that area, a close-up of each of the variables is shown in the bottom left panel, thus allowing for a comparison of the
variables on a finer spatial scale. Negative NDVI represent water in the landscape. Aside from ponds (many of which are in Chicago's urban parks), a couple of rivers go through Cook
County, Illinois. The inset on the bottom left corner shows the location of Cook County, Illinois within the conterminous USA.
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known to generate reliable terrain models even in heavily
vegetated environments (Kellner, Clark, & Hubbel, 2008). A Dig-
ital Surface Model (DSM) was generated by calculating maximum
elevation of all points (both ground and non-ground) within each
pixel. A Digital Height Model (DHM) was computed by sub-
tracting the DTM from the DSM, so that the DHM represented
height-above-ground and topographic effects were removed.
Finally, the DHM was used to calculate volumetric estimates of
objects on the ground by multiplying the height-above-ground
value by area of the pixel.

Although LiDAR canprovide volumetric information of objects on
the ground, and structural characteristics of vegetation such as
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forests (e.g., Jung & Pijanowski, 2012; Jung, Pekin, & Pijanowski,
2013; Mascaro, Detto, Asner, & Muller-Landau, 2011) it cannot
differentiate between land covers. NormalizedDifferenceVegetation
Index (NDVI) calculated from multispectral data is a well-known
indicator (e.g. DeFries & Townshend 1994; Fensholt & Proud, 2012)
that can be used to differentiate vegetation and non-vegetation
classes. The NDVI map can be coupled with the volumetric esti-
mates from the LiDAR data so that volume of vegetation and non-
vegetation classes can be calculated separately. We used aerial
orthomosaic images to generate an NDVI map of the study area. The
aerial images were acquired in June 2010 as part of the USDA Na-
tional Agriculture Image Program (NAIP). The NAIP images were
delivered with a spatial resolution of 1 m andwith 4 spectral bands;
red (R), green (G), blue (B), and near infrared (NIR). The NDVI layer of
Cook County at 1 m spatial resolution was generated using Eq. (1).

NDVI ¼ ðNIR � RÞ=ðNIR þ RÞ (1)

We performed a binary classification (vegetation vs. non-
vegetation class) using 0.2 as an NDVI threshold value. The
threshold value was selected based on suggested values in previous
studies (Xu, 2007) and after visually inspecting the binary classifi-
cationmapbyoverlaying thefinespatial resolutionaerial images. The
binary classification results were used to calculate volumetric esti-
mates of vegetation and non-vegetation classes. The non-vegetation
volume is hereafter referred to as built-area volume. Vegetation
volume and built-area volumeweremeasured in km3 and calculated
as the total value within various buffers around the weather station.

We created a 3D vegetation index by multiplying normalized
vegetation volume (calculated by dividing the sum of vegetation
volume in each buffer by the maximum value of the sum of vege-
tation volume in the buffers across the study area) byNDVI. Together
these represent both a measure of the volume of the vegetation and
its “greenness”, i.e. a 3D NDVI. We assumed that areas with high
values of 3D NDVI have denser stands of trees. Vegetation volume,
built-area volume, NDVI, and 3DNDVIwere all measured atmultiple
buffer distances around eachweather station (100, 250, 500, 750 and
1000 m). We also measured distance from each weather station to
Lake Michigan. Table 1 provides the summary statistics for these
variables. We expected that, in summer, nighttime temperature
would increase as built-area volume increased and would decrease
as vegetation volume, NDVI, and 3D NDVI increased.
2.5. Modeling

We aimed to test the importance of vegetation volume as an
explanatory factor in nighttime air temperature and to characterize
the response of nighttime temperature to variations in vegetation
volume, built-area volume, and NDVI. Elevation and distance to Lake
Michigan were hypothesized to affect temperature as well, yet they
were strongly correlated (rho ¼ 0.85, p < 0.001, n ¼ 33, Table A1).
Thus, only distance to Lake Michigan was retained in subsequent
models. We checked for multicollinearity in our explanatory vari-
ables at each scale of analysis by calculating Variance Inflation
Factors (VIFs) using the R (R Core Team, 2013) package usdm. We
log-transformed built-area volume to improve linear relationships.
Four linear regression models were examined:

(1) temperature ¼ a þ b(distance to lake) þ c(vegetation
volume) þ ε

(2) temperature ¼ a þ b(distance to lake) þ c(log(built-area
volume)) þ ε

(3) temperature ¼ a þ b(distance to lake) þ c(NDVI) þ ε

(4) temperature ¼ a þ b(distance to lake) þ c(3D NDVI) þ ε
The maximum likelihood estimates of the model parameters (a,
b, c) were estimated using simulated annealing, a global optimi-
zation algorithm (Goffe, Ferrier, & Rogers, 1994). This was
completed in R using the likelihood package (Murphy, 2012). We
used default settings, a normal probability density function, 10,000
iterations, and all initial lower and upper bounds for the parame-
ters were set at �100,000, and 100,000 respectively. Model selec-
tion was completed using AICc in R (version 3.0.1), with the best
models having high R2 and lower DAICc. Residuals of all the models
were visually examined for heteroscedasticity, outliers, and other
patterns. None were detected.

2.6. Assessing volume and greenness metrics across land use types

We used Land Use Inventory data from 2010, provided by
Chicago Metropolitan Agency for Planning (available here http://
www.cmap.illinois.gov/data/land-use/inventory), to assess the
allocation of land, vegetation volume, mean NDVI, and mean 3D
NDVI in the various land use types found across the study area.
The various land use types from the Land Use Inventory are
“Agriculture” (land use code of 2000); “Vacant” which includes
undeveloped land and land under construction (land use code
4000); “Developed” (land use code 1000) which combines resi-
dential, industrial, commercial, institutional, and transportation;
“Open Space” (land use code 3000) which includes forest pre-
serves, golf courses, public and private open space, and trails; and
“Other” which includes so called ‘non parcel areas’ (land use code
6000) such as road rights-of-way. Water parcels and parcels that
are labelled as not classifiable (land use codes of 5000, and 9999,
respectively) were removed from subsequent analyses. They
represented 0.33 and 0.05% of the land use in Cook County,
respectively.

2.7. Potential limitations of approach

We were limited by the availability of datasets. LiDAR data and
high spatial resolution aerial images for our study area were only
freely available at the times specified above. Since the datasets
are within three years of each other, collected during a severe
economic recession, and Cook County is already highly devel-
oped, it is unlikely that the green and grey infrastructure within
the area changed substantially over that time period. Lastly, it is
important that NDVI be at or near its peak for the results to be
tenable. Given that Cook County is situated in the Northern
Hemisphere at mid-latitudes, the month of June is considered
late Spring, early summer, which would coincide with near peak
NDVI values.

3. Results

Models explained between 44% and 63% of the spatial variation
inmean nighttime temperature. The best model (based on AICc and
R2) included NDVI and vegetation volume as predictor variables
(Table 2). Built-area volume explained the least amount of variation
and most models that included this predictor variable had the
highest AICc. Vegetation volume, NDVI, and 3D NDVI had negative
relationships with temperature, while built-area volume had a
positive relationship with temperature (Table 2, c parameter). In all
models, the b parameter was negative, meaning that nighttime
temperature was lower for stations that were further away from
Lake Michigan (Table 2 and Fig. 1). All of the VIFs were less than 4
(Table B1) indicating that our models were properly specified.

The best scale of analysis depended on the predictor variable.
Of several models tested, 3D NDVI had the most explanatory po-
wer whenmeasured in 500m buffers around the weather stations
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Table 1
Summary statistics for variables used in the models (n ¼ 33 weather stations).

Variable Mean (SD) Minimum Maximum

Elevation (m) 200.29 (23.15) 176.46 269.89
Distance to lake (km) 15.21 (10.78) 0.76 35.02
Sum of vegetation volume within 100 m (km3) 0.03 (0.02) 0.00 0.08
Sum of vegetation volume within 250 m (km3) 0.17 (0.11) 0.01 0.46
Sum of vegetation volume within 500 m (km3) 0.72 (0.4) 0.10 1.49
Sum of vegetation volume within 750 m (km3) 1.68 (0.9) 0.24 3.38
Sum of vegetation volume within 1000 m (km3) 3.04 (1.62) 0.50 6.88
Sum of built-area volume within 100 m (km3) 0.03 (0.03) 0.00 0.18
Sum of built-area volume within 250 m (km3) 0.15 (0.17) 0.00 0.87
Sum of built-area volume within 500 m (km3) 0.65 (0.84) 0.01 4.71
Sum of built-area volume within 750 m (km3) 1.48 (2.05) 0.04 11.78
Sum of built-area volume within 1000 m (km3) 2.63 (3.74) 0.41 21.47
Mean of NDVI within 100 m 0.16 (0.11) �0.05 0.35
Mean of NDVI within 250 m 0.17 (0.1) �0.06 0.32
Mean of NDVI within 500 m 0.18 (0.09) 0.01 0.34
Mean of NDVI within 750 m 0.18 (0.09) 0.02 0.31
Mean of NDVI within 1000 m 0.19 (0.09) 0.03 0.30

Table 2
Comparison of model outputs.

Model AICc R2 DAICc a b c

Vegetation volume - 100 m 84.8 0.48 11.1 19.97 �0.07 �16.81
Vegetation volume - 250 m 81.23 0.54 7.53 20.12 �0.06 �3.82
Vegetation volume - 500 m 77.03 0.59 3.33 20.27 �0.06 �1.2
Vegetation volume - 750 m 78.91 0.57 5.21 20.28 �0.06 �0.53
Vegetation volume - 1 km 78.75 0.57 5.05 20.27 �0.05 �0.31
Built-area volume - 100 m 79.26 0.56 5.56 21.26 �0.04 0.53
Built-area volume - 250 m 85.68 0.47 11.98 20.1 �0.05 0.37
Built-area volume - 500 m 86.41 0.46 12.71 19.48 �0.04 0.32
Built-area volume - 750 m 84.32 0.49 10.62 19.06 �0.03 0.5
Built-area volume - 1 km 80.35 0.55 6.65 18.44 �0.02 0.72
NDVI - 100 m 85.09 0.48 11.39 19.82 �0.05 �3.51
NDVI - 250 m 81.6 0.53 7.9 19.96 �0.04 �4.83
NDVI - 500 m 80.3 0.55 6.6 20.07 �0.04 �5.31
NDVI - 750 m 77.93 0.58 4.23 20.23 �0.03 �6.6
NDVI - 1 km 76.56 0.6 2.86 20.29 �0.03 �6.85
3D NDVI - 100 m 80.73 0.54 7.03 19.8 �0.06 �5.69
3D NDVI - 250 m 74.57 0.62 0.87 19.95 �0.06 �7.16
3D NDVI - 500 m 73.7 0.63 0 19.94 �0.06 �5.87
3D NDVI - 750 m 76.17 0.6 2.47 19.89 �0.05 �5.75
3D NDVI - 1 km 76.9 0.59 3.2 19.87 �0.05 �6.45
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(R2 ¼ 0.63, Figs. 2 and 3), but the 250 m resolutionwas also a good
model with DAICc less than 2 (Table 2). On the other hand, the
explanatory power of built-area volume was greatest at the
smallest buffer size (R2 ¼ 0.56 at the 100 m scale) and was
Fig. 2. R2 values for the four different models at the 5 spatial scales. The model with
the lowest AIC is designated by an asterisk (*) above its column. The one competing
model (within 2 DAIC of the best model) is designated by a carrot (̂ ).
smallest at intermediate buffer sizes (Fig. 2). NDVI explained the
most variation at the largest buffer (R2 ¼ 0.60) and the least
variation when measured in 100 m buffers (R2 ¼ 0.48, Fig. 2).
When considered alone, vegetation volume best explained the
variation in temperature when measured in the 500 m radius
(R2 ¼ 0.59) but the 750 m model cannot be differentiated statis-
tically (Table 2).

In general, mean nighttime temperature for summer 2011 var-
ied by 3 �C across the city, whereas higher temperatures were
observed in areas with less vegetation volume and lower NDVI
(Fig. 3 for the 500 m scale; other scales showed similar patterns
although the relationship between sum of vegetation volume and
mean NDVI at the 100 m scale was the weakest).

The Land Use Inventory data revealed interesting trends in
vegetation patterns across the city (Fig. 4). Developed land (res-
idential, industrial, commercial, institutional, and transportation)
accounted for the majority of the area (61%), and also contained
the greatest total vegetation volume in the city. Open space
(forest preserves, golf courses, public and private open space, and
trails) only accounted for 15% of the study area but these areas
contained the second highest total vegetation volume and had
the highest mean 3D NDVI values of all land uses. The “other”
category, which consists mostly of road rights-of-way, accounted
for 17% of the land, and had the second largest mean 3D NDVI
value.
4. Discussion

Our models were able to explain 63% of the spatial variation in
urban air temperature based on NDVI and vegetation volume
measured in a 500 m buffer around weather stations. While NDVI
and vegetation volume alone each explain a fair amount of
variation in temperature, they performed best when considered
together. NDVI is a good measure of vegetative vigor (i.e. plant
health and photosynthetic activity), as high values of NDVI
indicate actively growing plants with many chlorophyll cells and
mesophyll tissue (Campbell, 2002). Vegetation that is stressed
due to heat, lack of water, or disease will have a lower NDVI than
the same volume of healthy vegetation. Similarly, older trees,
which are less photosynthetically active than young trees (Ryan,
Binkley, & Fownes, 1997), would have lower NDVI than similarly-
sized young trees. NDVI is also known to be influenced by leaf
area index, canopy shape and cover, species composition, land
cover type, leaf optics, understory vegetation, and biomass
(Huete et al. 2002). On the other hand, vegetation volume (as



Fig. 4. a) Percent of study area in the various land uses in Cook County IL. b) Sum of vegetation volume by land use. c) Mean NDVI by land use. d) Mean 3D NDVI by land use. The
various land use types are “Agriculture”; “Vacant” which includes undeveloped land and land under construction; “Developed” which combines residential, industrial, commercial,
institutional, and transportation; “Open Space” which includes forest preserves, golf courses, public and private open space, and trails; and “Other” which includes so called ‘non
parcel areas’ such as right-of-ways.

Fig. 3. Relationship between mean NDVI within 500 m of the weather station, sum of Vegetation Volume within 500 m of the weather station, and mean nighttime air temperature
at the weather station between June 21 and September 21 2011.

A.Y. Davis et al. / Applied Geography 71 (2016) 106e114 111
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measured by LiDAR) indicates the total amount of vegetation,
whether it is growing vigorously or not. Vegetation volume is
most likely distinguishing grass from trees, which would help
explain temperature differences since trees have a higher tran-
spiration rate than grasses and thus provide more cooling.
Indeed, increased vegetation volume helped reduce the urban
heat island effect in Amsterdam (Rafiee, Dias, & Koomen, 2016).
However, areas of low vegetation volume, such as turf grass, also
modify urban temperature, with some studies modeling an in-
crease in surface temperature with increased turf grass cover
(Skelhorn et al. 2014 for Manchester UK) and others observing a
decrease (Myint et al. 2013 for Phoenix AZ). We think vegetation
volume and NDVI provide complementary information, which
might explain why the combination of NDVI and vegetation
volume (what we refer to as 3D NDVI) is a better predictor of
urban air temperature in Cook County, Illinois, than either vari-
able alone.

Most interestingly, it seems that the effect of combined vege-
tation cover and volume is strongest at intermediate spatial res-
olutions (500 m from the weather station), and that the sphere of
influence of 3D NDVI on temperature is smaller than that of NDVI
alone. In a study conducted in Indianapolis IN, Weng et al. (2004)
found that the strongest (negative) correlation between NDVI and
surface temperature occurred at a scale of 120 m. In Beijing, China,
Song et al. (2014) found that the relationship between surface
temperature and land cover was strongest at 660 and 720 m
scales. These results are in line with ours and the differences in the
importance of scales may be due to differences in physical char-
acteristics of the cities themselves (block size, building density,
percent grey and green infrastructure, etc.), study design (none of
the temperature sensors in our study were located in forest pre-
serves or Chicago's large urban parks), and of course regional
climate characteristics.

From an urban planning standpoint, the implication of these
results is that a city needs to not just spread out green space, but
also spread out mature trees, or at the very least nurture existing
mature trees. The major implication of these findings is that
neighborhoods with mature trees are reaping substantially more
benefits in terms of microclimate or urban heat island reduction
than neighborhoods that “just” have young trees, smaller trees, and
grassy parks. Indeed, we see a 3 �C range in temperature across our
study area.

The medium-large buffer size in the best model indicates that
broad vegetation cover has a greater influence on mitigating tem-
peratures compared to vegetation at more local scales. Practically,
this might imply that spreading any vegetation (shrubs, and young
and old trees) throughout a city could be a good approach to
mitigating urban heat island effects, i.e. a land sharing approach
rather than land sparing. This approach has also been suggested by
Rotem-Mindali, Michael, Helman, and Lensky (2015) after an
analysis of local land use on the urban heat island effect in Tel Aviv.
On the other hand, it is well known that vegetated parks act as “cool
islands” (Chang et al., 2007; Feyisa et al., 2014; Yu & Hien, 2006)
and other research has shown that as park size increases, urban air
temperature near the park decreases (Cao, Onishi, Chen, & Imura,
2010). Our study illustrates the importance of the matrix, i.e.
non-park vegetation, for temperature mitigation since the majority
of the vegetation volume in the study area occurs within residen-
tial, commercial/industrial, and institutional land uses. However,
open space has nearly as much total vegetation volume as the
developed land use category yet only accounts for approximately
15% of the study area, while developed land use accounts for nearly
61% of the study area. Clearly, a combination of having both large
wooded parks within a city and large trees scattered across
developed areas are necessary, especially whenmultiple ecosystem
services are considered beyond temperature mitigation (Stott,
Soga, Inger, & Gaston, 2015).

In contrast to vegetation, the effect of built-area volume (not
accounting for different building materials) was local; this vari-
able had the most explanatory power when measured within
100 m of the weather stations. Using built-area volume standards
to mitigate urban heat island effects would be impractical, given
that spreading buildings out would be detrimental from a land-
use and housing-density perspective, as well as other related ur-
ban planning issues.

We also note that temperatures at weather stations near Lake
Michigan are warmer than more inland stations. The coast, with its
proximity to beaches and trails along it, is a desirable location to
live in the city, which means that there are strong pressures to
provide housing and other grey infrastructure near it, at the
expense of green infrastructure. Indeed, areas closest to downtown
Chicago are associated with high building volume, low vegetation
volume, and low NDVI. Additionally, the lake provides cooling
nearby during warm days, when air over the city heats up, rises,
and is replaced by cooler air from over the lake, but we hypothesize
that this lake breeze effect is not present at night or might even
reverse itself.

4.1. Future research

This research should be repeated in other cities with varying
climates and of varying sizes to determinewhether the relationship
holds in those localities, and to see if a simple equation could help
characterize the relationship between vegetation volume, NDVI,
and urban air temperature across multiple cities. Future research
might also include comparing the index we propose here to leaf
area index or plant biomass measures, and relating those to air
temperatures across an urban to rural gradient, rather than just
within an urban area.

5. Conclusion

The uniqueness of our study lies in our 3-dimensional vegeta-
tion component and the fact that we examined air temperature
rather than surface temperature. We also used multiple months of
data, conducted this research in a humid continental climate (many
studies were undertaken in a semi-arid climate by the Phoenix
LTER, where trees are less common), and our weather stations span
an urbanization gradient, i.e. from downtown Chicago to less dense
suburban areas. We found that a combination of vegetation volume
and NDVI best explained differences in urban air temperature
which, in summer 2011, were observed to be as large as 3 �C across
Cook County, Illinois. These findings may have implications for
many cities in the Midwest, which have recently taken manage-
ment actions to deal with the emerald ash borer invasion. Many of
them have decided to remove all ash trees within their jurisdiction,
yet this research provides more support that investing in treatment
options would be highly beneficial, even for older trees, given the
temperature mitigation and other ecosystem services they are
known to provide.
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Appendix A

Table A1
Pearson correlations between variables (p-values are not adjusted for multiple comparisons). VV stands for Vegetation Volume, BV stands for Built-area Volume, and NDVI stands for
Normalized Difference Vegetation Index.

Dist. to
lake

Elevatici Sum of
vegetation
volume
(100m)

Mean of
NDVI
(100m)

Sum of
built-are
volume
(100m)

Sum of
Vegetatio
Volume
(250m)

Mean of
NDVI
(250m)

Sum of
built-are
volume
(250m)

Sum of
vegetation
volume
(500m)

Mean of
NDVI
(500m)

Sum of
built-are
volume
(500m)

Sum of
vegetatio
volume
(750m)

Mean of
NDVI
(750m)

Sum of built-
are a volume
(750m)

Sum of
vegetation
volume
(lkm)

Mean of
NDVI
(lkm)

Sum of
built-area
volume
(1km)

Temperature �0.61 *** �0.67 *** �0.25 �0.56 *** 0.62 *** �0.36 * �0.62 *** 0.62*** �0.48 ** �0.64*** 0.56*** �0.51 ** �0.7*** 0.54** �0.53** �0.73*** 0.54**
Dist. to lake 0.81 *** �0.14 0.42* �0.51 ** �0.07 0.43* �0.58 *** 0.01 0.41* �0.53** 0.11 0.49 ** �0.51 ** 0.14 0.53** �0.51**
Elevation �0.03 0.26 �0.38 * 0.02 0.32 �0.43 * 0.16 0.33 �0.39 * 0.24 0.43 * �0.37 * 0.23 0.47** �0.37*
Sum of VV

(100m)
0.54** �0.28 0.91*** 0.51 ** �0.29 0.74 *** 0.49 ** �0.24 0.61*** 0.46 ** �0.24 0.53 ** 0.44** �0.24

Mean NDVI
(100m)

�0.52 ** 0.66*** 0.93 *** �0.6*** 0.62 *** 0.88 *** �0.51** 0.52 ** 0.84 *** �0.47 ** 0.46** 0.82*** �0.46**

Sum BV
(100m)

�0.35 * �0.57 *** 0.98*** �0.41 * �0.62*** 0.98 *** �0.44* �0.64*** 0.97 *** �0.44* �0.66*** 0.97***

Sum of VV
(250m)

0.66 *** �0.38 * 0.89 *** 0.65*** �0.33 0.74*** 0.61 *** �0.33 0.65 *** 0.58 *** �0.32

Mean NDVI
(250m)

�0.65 *** 0.7*** 0.96 *** �0.57 *** 0.63 *** 0.93 *** �0.53 ** 0.57 *** 0.91*** �0.52 **

Sum of BV
(250m)

�0.44 * �0.63 *** 0.98 *** �0.44 ** �0.71 *** 0.96 *** �0.44* �0.72*** 0.96 ***

Sum of VV
(250m)

0.74 *** �0.4* 0.95 *** 0.73 *** �0.4* 0.86 *** 0.72 *** �0.38*

Mean NDVI
(500m)

�0.61*** 0.68*** 0.98 *** �0.58 *** 0.62*** 0.95 *** �0.56***

Sum of BV
(500m)

�0.42 * �0.64*** 1*** �0.42* �0.65*** 0.99 ***

Sum of VV
(750m)

0.72 *** �0.42 * 0.96*** 0.73 *** �0.42*

Mean NDVI
(750m)

�0.61 *** 0.68 *** 0.99 *** �0.6 ***

Sum of BV
(750m)

�0.43 * �0.63 *** 1***

Sum of VV
(1km)

0.71 *** �0.42 *

Mean NDVI
(1km)

�0.62***
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Appendix B
Table B1
Variance Inflation Factors (VIFs) for variables included in models at the different
scales of analysis. VIFs are only to be compared within columns.

100 m 250 m 500 m 750 m 1000 m

Dist. to lake 1.91 2.15 1.83 1.76 1.8
Vegetation volume 1.89 2.53 2.84 2.56 2.37
NDVI 2.2 3.23 3.59 3.52 3.47
Built-area volume 1.68 2.25 1.92 1.78 1.76
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