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Notes

Introduction

Vast expanses of Neotropical rainforest have been con-
verted to cattle pasture and crops, leaving small forest 
fragments scattered among farms and pastures (e.g., 
Montagnini and Jordan 2005). In these fragmented land-
scapes, persistence of many species depends on their ability 
to recolonize or move through habitat patches or take 
advantage of secondary vegetation (Gustafson and 
Gardner 1996, Damschen et  al. 2008, Chazdon 2014). 
Maintaining landscape connectivity with corridors or 
stepping stones is an important option for conservation 
in the face of habitat loss (Heller and Zavaleta 2009). 
These networks of connected patches potentially counter-
balance effects of fragmentation by broadening species 
distributions and rescuing genetically isolated populations 

(Alagador et al. 2012, McConkey et al. 2012). Landscape 
connectivity restored with strategic plantings may also 
increase the success of conservation efforts (Chazdon 
2014, Tambosi et al. 2014), but little empirical work tests 
the idea.

Most Neotropical rainforest trees and shrubs are dis-
persed by animals (Jordano 1995). Large-seeded trees are 
especially vulnerable to fragmentation because they are 
dispersed by large animals that are less common and are 
more susceptible to hunting (Markl et  al. 2012). In 
Central American forests, toucans (Ramphastos sul-
furatus and R.  swainsonii) range widely while foraging 
for large-seeded fruits, with frequent seed-dispersal dis-
tances of 150–250  m or more (e.g., Kays et  al. 2011). 
However, few large-seeded trees are dispersed by animals 
into active pastures (Martínez-Garza et  al. 2009, 
Saavedra et  al. 2015). An open question is whether 
toucans or other large birds can effectively and pre-
dictably disperse large seeds into experimental plantings 
in agricultural landscapes.
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Experimental plots were established in Veracruz, 
Mexico in 2006 to determine whether dispersal processes 
could be manipulated to accelerate succession. Previous 
work demonstrated that planted plots recruited far more 
trees and shrubs than controls (de la Peña-Domene et al. 
2013). In particular, recruitment of bird-dispersed, 
primary-forest tree species increased dramatically as 
planted pioneer trees began to fruit (de la Peña-Domene 
et al. 2014).

To determine whether different restoration treatments 
affect recruitment in predictable ways, we assess 
recruitment patterns directly rather than examine seed 
rain (de la Peña-Domene et al. 2013, 2014). Dispersal is 
a necessary precondition for recruitment, but so many 
density-dependent and density-independent factors 
intervene between the seed and sapling stages that pat-
terns of seed fall are barely reflected in effective 
recruitment (e.g., Harms et al. 2000, Howe et al. 2010, 
Schupp et al. 2010, Caughlin et al. 2015). This is particu-
larly the case in heavily disturbed habitats where seed 
sources are far from recruitment sites.

Here we used a spatially explicit approach to examine 
patterns of recruitment of large-seeded Ocotea uxpan-
apana (Lauraceae), a vulnerable tree (Red List of 
Threatened Species 1998) endemic to southern Mexico. 
We hypothesized that planted plots shaped recruitment 
patterns of this species, first by attracting large birds to 
fruiting trees and cover, and second by providing shaded 
conditions suitable for seedling establishment and growth.

Methods

Study site and species

The 640 ha Los Tuxtlas Biological Station (LTBS) lies 
in the northern portion of the 155,000+ ha Los Tuxtlas 
Biosphere Reserve in Veracruz, southeast Mexico. The 
landscape in the reserve is highly fragmented, but LTBS 
is part of a large fragment (~9,000 ha) of tropical rain 
forest with ~35 m high closed canopy. Mean annual tem-
perature and rainfall are 27°C and 4,900 mm, respectively 
(González Soriano et al. 1997). Our site is a 12 ha pasture 
that has been intensively grazed by cattle for 30–40 yr, 
embedded in a mosaic of farms, isolated trees, and 
primary and secondary forest.

Ocotea Aubl. is a genus of >300 recognized species 
of trees and shrubs, mostly in the Neotropics (Van der 
Werff 2002). Octotea uxpanapana is a recently-described 
tree growing to 30 m and up to 1 m dbh (Wendt and 
van der Werff 1987). The species has distinctive narrow 
leaves to 25 cm long and green ellipsoid fruits 22 mm 
long to 19  mm wide. The seed is dark brown and 
~20 mm long × 18 mm wide. It is endemic to mature 
rainforests of southern Veracruz (Arroyo-Rodríguez 
et  al. 2009). It also occurs as a relic tree in wooded 
pastures.

Experimental design

In July-August 2006, 24 fenced plots (30 × 30 m) each 
separated by 35  m of active dairy pasture (central GPS 
18°35′43.64″ N, 95°06′06.29″ W) were established adjacent 
to privately-owned late secondary forest continuous with 
LTBS (Fig. 1; Appendix S1: Fig. S2). The SE corner of 
the grid was 95 m from late secondary forest, which was 
continuous with the edge of LTBS 714 m away. Individually 
tagged seedlings of 24 tropical tree species from 15 families 
were planted in 2006 and 2007 (Martínez-Garza et  al. 
2013). Eight plots were planted with seedlings of animal-
dispersed species (none Lauraceae), eight with seedlings 
of wind-dispersed species, and eight were left as unplanted 
controls to simulate natural succession. Distribution of 
treatments among the plots was selected at random. Broad 
characteristics of seed rain were assessed in the plots from 
2007 to 2011 and again from 2013 to 2014. Of 369,493 
seeds, 92% were small and wind-dispersed (45% were 
Eupatorium pycnocephalum). Average seed rain was 3,225 
seeds month−1 in 2007 and increased to 30,276 seeds 
month−1 in 2014. A few seeds, belonging to 66 species, 
exceeded 15 mm in width; none were Ocotea (Popoca, in 
preparation). Sampling effort for seed rain (<1% of the 
area sampled for recruitment) detects broad patterns but 
not rare species.

Starting in June 2007, we recorded naturally recruited 
seedlings in the plots every four months for the first 5 
yr and every six months from 2012 to 2014. The total 
area assessed in each plot was 563 m2 for planted plots 
and 676 m2 for control plots, excluding space used for 
seed traps and 0.5  m2 spaces for planted seedlings in 
planted plots. Total sampled area was 14,415 m2 over 
a period of 7 yr. Seedlings ≥10 cm high were the smallest 
size that could reliably be found. The present study 
reports recruited seedlings from 2011, when the species 
was first documented, to January 2014. In the last 
census, 38 individuals represented the entire population 
of recruited O. uxpanapana in the plots; recruits ranged 
from 14–83 cm tall (41 ± 19 SD cm). Because Ocotea 
fruits are large and birds were unlikely to carry more 
than one at one time, we assumed that recruits were 
from separate dispersal events. We also recorded the 
location of all reproductive conspecifics (n = 12) in the 
surrounding 100 ha.

Canopy cover and seedling recruitment

Canopy may affect O. uxpanapana recruitment in two 
ways. First, woody vegetation indirectly affects seed dis-
persal by providing cover and food for forest birds. We 
examine this indirect effect with least-cost path analysis 
of established seedlings to determine whether they reflect 
random patterns with respect to mature conspecifics and 
the patchwork of experimental stands of trees. Second, 
by suppressing grasses and ferns, canopy cover benefits 
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O.  uxpanapana establishment. To tease apart these 
effects, we measured canopy cover in plots and mapped 
distances to reproductive conspecific trees in the sur-
rounding landscape. In July 2012 we took 12 high-
contrast canopy photos per plot, subtracted the 
nonluminous pixels in each photo from total pixels, and 
calculated the mean % openness per plot. For the 

remaining landscape (outside the plots), we used ArcMap 
10.1 to digitize individual trees and surrounding forest 
from a 2009 aerial photograph, with conversion to a 
binary raster data layer of 1 m resolution.

We estimated probability of effective seed dispersal 
(i.e., dispersal resulting in seedlings, Schupp et al. 2010) 
into each plot based on a set of distance measures from 

Fig. 1.  Close-up of the site map of 24 experimental restoration plots embedded in pasture. Areas to the south and west of the 
plots are largely covered by tropical rain forest. Cost surface values shown after restoration range from zero to 100, where zero 
represents completely forested areas (dark gray) and 100 are completely open areas (light gray). Unoccupied plots are shown with 
an x and occupied plots are represented with a white circle, with size representing the abundance of O.  uxpanapana seedlings. 
Planting treatments are indicated by letters: A for plantings of animal-dispersed trees, W for plantings of wind-dispersed trees and 
C for unplanted control plots. Mature Ocotea uxpanapana trees are crossed white circles and the black lines show some least cost 
paths from a potential conspecific parent tree to each plot. Not all potential parent trees in the surrounding 100 ha are shown in the 
map. A larger spatial extent, with more potential parent trees, is shown in Fig. S2.
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potential parent trees. We calculated Euclidean distance 
and accumulated costs of the least cost path (LCP) dis-
tance from all reproductive adults to each plot. We used 
the Cost Path tool in ArcMap 10.1 (ArcGIS Desktop, 
Redlands, California, USA) to identify the LCP. Free, 
open-source alternatives to ArcMap include Geographic 
Resources Analysis Support System (GRASS) and 
System for Automated Geoscientific Analyses (SAGA).

The cost path tool found the path from point A (each 
reproductive adult) to point B (each study plot) that 
accumulated the minimum total cost. Accumulated cost 
reflected the difficulty associated with traversing different 
parts of a landscape for the disperser. Higher costs rep-
resented species-specific factors that plausibly impeded 
movement, such as energetic cost or exposure to pre-
dation risk (Etherington and Holland 2013). The path 
was based on a resistance or “cost” surface that a bird 
might incur while crossing the landscape. Because 
O.  uxpanapana was primarily dispersed by large forest 
birds, we assumed that increased canopy cover would 
generate lower costs for the birds (higher potential 
rewards of food and lower perceived risk), leading to 
lower dispersal costs for the plant. The cost surface 
assigned a value of (100 – X% canopy cover) to each 1 m2 
pixel, where X represented the canopy cover in that pixel. 
These paths could wind across the landscape in non-
linear ways, influenced by the presence of isolated trees, 
small forest patches and living fences (Fig.  1). Once 
Euclidean distances and LCPs were calculated from all 
reproductive adults, we identified the minimum Euclidean 
distance and the minimum LCP for each plot. These 
minimum values represented distance to the nearest 
reproductive adult and were used in our models as esti-
mates of seed-dispersal probability.

As a third estimate of seed movement probability, we 
counted the number of times a LCP passed through each 
plot en route to other plots. LCPs, and the number of 
times a path crossed through each plot, were calculated 
before restoration (no woody canopy) and after resto-
ration, allowing examination of how restoration might 
alter dispersal paths across the landscape.

Recruits did not establish in active pasture surrounding 
plots. Cattle ate woody species emerging in active pasture 
except Conostegia xalapensis (Melastomaceae) and 
Stemmadenia donnell-smithii (Apocynaceae), which are 
eradicated by the landowner.

Statistical analysis

We used correlation to examine relationships between 
seedling abundance in each plot, canopy cover in the plot, 
and dispersal probability. Relationships among canopy 
cover, minimum Euclidean distance, and minimum least 
cost distance were nonlinear; those variables were natu-
ral-log transformed. We used multiple linear regression 
to evaluate the combined importance of local canopy 
cover, seed dispersal probability, and their interaction 
term on O. uxpanapana establishment, a procedure less 
prone to type I errors than generalized linear models (Ives 
2015). We included the dispersal probability variable that 
most strongly correlated with number of O. uxpanapana 
seedlings in the model. Canopy cover and dispersal prob-
ability were natural-log transformed and then centered 
before calculating the interaction term to reduce collin-
earity and increase interpretability of regression slopes. 
To address questions about the effect of restoration on 
seed dispersal routes, we used repeated measures ANOVA 
with number of crossing routes as a dependent variable 
and experimental treatment (control and plantings of 
wind-dispersed or animal-dispersed species) and time 
(before or after restoration) as independent variables. We 
used Statistica 7 and R (R Foundation for Statistical 
Computing, Vienna, Austria) for all statistical analysis.

Results

The number of O.  uxpanapana seedlings increased as 
a function of the number of crossing routes through each 
plot and decreased as a function of Euclidean distance, 
LCP distance, and canopy openness (Table 1). Predictor 
variables were significantly correlated with number of 
O. uxpanapana seedlings. Because LCP distance was the 
most strongly correlated dispersal-probability variable, 
it was included with canopy cover in the multiple linear 
regression model. The regression coefficients for canopy 
cover, LCP distance, and their interaction term were all 
significant (Table  2). A “best subsets regression” 
approach, which tests all combinations of predictor var-
iables, indicated that the best model (∆AICc >4) included 
all predictor variables (data not shown). Together, these 
three variables explained 73% (adjusted r2 = 0.69) of the 
variability in number of seedlings of this species per plot. 
Ocotea uxpanapana seedlings rarely established with 

Table 1.  Summary of  correlations between all evaluated variables.

ln(openness) ln(cost distance) No. Routes Ln Euclidean distance

Seedlings −0.661** −0.617** 0.541* −0.496*
ln(openness) 0.34 −0.755*** 0.268
ln(cost distance) −0.529* 0.876***
No. Routes −0.457*

Note: Numbers in bold are statistically significant correlations at the following levels: *P < 0 .05, **P < 0.01, ***P < 0.001.
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more than 35% canopy openness (Fig. 2A; Appendix S1: 
Table S1). Seedling abundance was highest in plots with 
low canopy openness and short LCP distances.

Prior to restoration, treatments did not differ in number 
of indirect routes crossing plots en route from potential 
parent trees to destination plots (mean 3 ± 5 SD routes 
per plot). After 7 yr of growth and establishment, planted 
plots significantly increased in number of indirect routes 
compared to unplanted control (F(2, 21) = 8.04, P < 0.005; 
Fig. 2B). Plots planted with wind-dispersed trees increased 
from 2.5 ± 3.1 to 18 ± 15 routes plot−1; plots planted with 
animal-dispersed trees increased from 2.1  ±  2.9 to 
14.4 ± 6.3 routes plot−1. Number of O. uxpanapana seed-
lings also increased with number of dispersal routes 
crossing plots (r = 0.54, P < 0.005).

Discussion

We show that small plots of planted trees can serve two 
important functions in conservation and restoration in a 
largely deforested tropical landscape. Recruitment sug-
gests that canopy cover in these plots creates a suitable 
environment for establishment of later-successional tree 
species; Ocotea rarely establishes when canopy cover is 
<65%. Moreover, by altering dispersal pathways of agents 
of seed dispersal, canopy cover in plots increases influx of 
large, animal-dispersed seeds and restores a degree of func-
tional connectivity to the landscape. Small preexisting 
patches also play an important role in this landscape 
(Fig. 1). An anomaly in our data provides further support 
for this idea: Four Ocotea seedlings were found in a 
control plot with a fairly open canopy (60% openness), 
but this plot was directly adjacent to a small stand of trees 
that included an adult Ocotea (Fig.  1). A growing liter-
ature indicates a need to increase connectivity by facili-
tating seed dispersal; we offer a preliminary experimental 
demonstration towards proof of concept.

Small vegetation patches can act as stepping-stones that 
increase animal movement through fragmented landscapes. 

The spatial arrangement and quality of habitat patches sig-
nificantly affect the rate of animal movement through them 
(Collingham and Huntley 2000, Tambosi et  al. 2014). In 
our case, toucans and oropendolas frequently forage in iso-
lated fruiting shade trees and in our small experimental plots 
(unpublished data); they appear to be efficient dispersers 
for Ocotea and other large-seeded species. Toucans largely 
frequent forests, but also range widely over isolated fruiting 
trees, fragments, living fences and riparian strips (Guevara 
and Laborde 1993, Slocum and Horvitz 2000). In the 
Yucatan Peninsula of Mexico, toucans frequent forest 
patches larger than 22 ha, but not small patches of 2–3 ha 
(Melo et al. 2010). Different results at Los Tuxtlas are likely 
due to patch quality rather than patch size. Our planted 
patches offer food resources and shelter that are attractive 
to large fruit-eating birds. At Los Tuxtlas, Graham (2001) 
finds that presence of these toucans in forest fragments is 
correlated with food abundance rather than fragment size. 
An approach that specifically restores habitat and 

Table  2.  Multiple regression results explaining number of 
Ocotea seedlings in each plot. Canopy cover and least cost 
path distance (LCP) were natural-log transformed and 
centered before analysis. Model r2 = 0.73.

Coefficient SE t P

Constant 1.27 0.39 3.20 0.01
Canopy cover −2.12 0.73 −2.89 0.01
LCP −1.99 0.79 −2.52 0.05
Interaction 2.87 0.96 2.97 0.01

DF SS F P

Regression 3 191.29 18.08 <0.001
Residual 20 70.55 
Total 23 261.83

Fig.  2.  (A) Canopy openness and cost path distance in 
relation to the establishment of Ocotea uxpanapana seedlings. 
Circles indicate plots in which O. uxpanapana established. Black 
circles are plots with animal-dispersed plantings, gray circles are 
plots with wind-dispersed plantings, and open circles are 
unplanted controls (color key is the same in A and B). The least 
cost path (y-axis) is unitless. (B) Relation of crossing paths and 
treatments though time. Number of crossing routes by 
restoration treatment in pre- and post-restoration. Means are 
represented by black circles (animal-dispersed plantings), grey 
squares (wind-dispersed plantings), and white diamonds 
(controls). Error bars indicate 95% confidence intervals. 
Different letters indicate differences based on a Tukey test, 
P < 0.05.
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functional connectivity for avian dispersers of large seeds is 
promising.

Of three measures of dispersal probability, abundance 
of O. uxpanapana seedlings was most strongly correlated 
with LCP distance from mature conspecific trees. 
Euclidian distance was also correlated with seedling 
establishment but this metric ignored ecological cost of 
movement for seed dispersers. Accumulated costs in 
LCPs better described the difficulty or perceived risk 
associated with traversing different parts of a landscape 
(Etherington and Holland 2013). Euclidian distances 
from potential parent trees to restoration plots were 
invariant, while least cost paths changed with resto-
ration. Changed movement paths are indicated by the 
increased number of crossing routes through planted 
plots (Fig. 2B). Although vegetation cover in the control 
plots also increased over the course of the study, the rel-
ative attractiveness of these plots (with respect to exper-
imental plots) decreased, and thus the number of crossing 
routes through control plots did not change.

Our assessments of effective dispersal using established 
O. uxpanapana seedlings likely underestimated the spatial 
extent of seed movement (see Kamm et al. 2010, Schupp 
et al. 2010). Nonetheless, the patterns of actual recruitment 
from dispersed seeds indicate the importance of enriched 
forest plantings in active agricultural landscapes. Our 
results likely apply to other large-seeded tree species facing 
similar dispersal constraints, some of which (e.g., Nectandra 
ambigens, Virola guatemalensis, Pseudolmedia oxyphyllaria) 
have also colonized our experimental plantings from nearby 
forest (de la Peña-Domene et al. 2014).

With widespread conversion of forest to agriculture 
and increasing fragmentation, the ability of tree species 
to move is critical (Corlett and Westcott 2013). For most 
tropical trees and shrubs, this requires heterogeneous 
landscapes that support animal populations, permit tem-
porary breeding populations of plants, and facilitate 
animal and plant migration. Our approach is to create 
heterogeneous matrices between remnants that allow 
persistence and movement of tree species that are capable 
of coexisting with agrarian economies (e.g., Perfecto and 
Vandermeer 2010). The capacity of species to exploit 
opportunities created by networks of stepping-stone 
patches is, to a degree, species-specific. Species not dis-
seminated by mobile animals are unlikely to colonize 
small, isolated forest patches or traverse forbidding land-
scapes. For those capable of movement assisted by 
habitat islands, strategic restoration offers a potential for 
maintenance of metapopulation dynamics in the short 
term and pathways for range shifts in the long term.
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