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Abstract: Urban planning and environmental science practice 
involves understanding and solving problems that arise from the 
intersections of human and natural systems. These systems often intersect 
with one another in very spatial ways: as when a roadway intersects a 
stream, or a cityscape covers a groundwater reservoir. When considering 
the challenge of integrating green infrastructure elements into urban 
landscapes (like water-trapping swales or areas of porous concrete) where 
these elements are placed, in relation to each other and in relation to other 
elements, can greatly modify their beneficial environmental impact. There 
is a growing need to help sensitize learners to such spatial patterns, 
especially as ordinary citizens are often called on to help make 
consequential urban planning decisions. Our research project has 
developed an interface (EcoCollage) that allows novice learners 
(undergraduate and AP high school students) to recognize spatial patterns 
present in environmental science / urban planning and mindfully rearrange 
them to affect emergent outcomes. To assist with this research, we 
developed software that applies spatial analytic techniques to the patterns 
co-constructed by learners, which allows us to detect and characterize 
their spatial problem-solving strategies. This paper describes how we 
conduct this spatial analysis and illustrates how it can be applied. 

1. Overview 
Spatio-temporal methods for studying learning are particularly useful when the content 
being learned is itself a phenomenon that unfolds over space and time, as is true with 
topics like environmental science and urban planning. Many of the current challenges we 
face as a society occur when human systems (e.g., settlements, roads, infrastructure) 
interact with natural systems (e.g., groundwater, habitats). The extent and nature of these 
interactions are dependent on the spatial patterns found within the human systems, the 
patterns within natural systems, and the intersections of these patterns. For example, the 
placement of wells is influenced by human patterns of settlement (wells need to be near 
where humans live) and groundwater reserves (wells need to be placed where 
groundwater is available), but the presence of other wells also affects placement (wells 
can create a “cone of depression” where the availability of groundwater is reduced). 
Urban planning and environmental science practice involves understanding and solving 
problems that arise from these human-natural intersections, but current educational 
practices delay opportunities to grapple with such problems until well into graduate-level 
studies. This can cause complications: a two-year graduate program may not be sufficient 



time for urban planning students to practice thinking spatially, and ordinary citizens are 
increasingly being involved in urban planning decision-making as stakeholders (Becu, 
Neef, Schreinemachers, & Sangkapitu, 2007) and may not be prepared to engage in the 
necessary spatial problem-solving. Thus, we have endeavored to create an educational 
intervention that allows spatial problem solving to be incorporated earlier in educational 
curricula. 

Our research project has taken a design-based research approach (Cobb, Confrey, 
diSessa, Lehrer, & Schauble, 2003) to develop an interface that allows novice learners 
(undergraduate and AP high school students) to recognize spatial patterns and mindfully 
rearrange them to affect emergent outcomes in human-natural systems (Shelley, Lyons, 
Minor, & Zellner, 2011; Shelley, Lyons, Shi, Minor, & Zellner, 2010). Novices, unlike 
practitioners or advanced students, often lack the specialized vocabulary needed to 
describe and discuss spatial patterns, making it difficult to assess their learning or study 
how their learning is progressing, as it is possible for learners to acquire spatial concepts 
weeks before mastering the disciplinary terminology (Singer, Radinsky, & Goldman, 
2008). When conducting design-based research to build software to support novice 
learners in this process, then, it is critical to develop methods that can reveal learners’ 
progress in early phases of learning. By observing student interaction and problem-
solving as they used our interface, EcoCollage, we witnessed learners developing ad-hoc 
spatial problem-solving strategies. However, we soon realized that there were not very 
many viable approaches for documenting these strategies and their evolution. 

A lack of mastery of disciplinary terminology can pose challenges for researchers 
looking for evidence of spatial reasoning, as methodological techniques for examining 
learning through dialogue (Bloome & Clark, 2006) require that researchers be able to 
identify the referents in learner’s conversation. We found that even when applying a 
grounded theory approach (Strauss & Corbin, 1997), which makes no presuppositions 
about the nature of the content of learners’ conversations, we had a difficult time 
establishing coding discriminations finer than “large-scale spatial” versus “small-scale 
spatial” (Slattery, et al., 2012). Arguably, incorporating gesture into the analysis would 
support a more refined coding scheme for spatial referents, but at the cost of increasing 
analysis time and thus the lag between design iterations. 

A method for detecting spatial reasoning via an embedded assessment approach 
(Wilson & Sloane, 2000) would be a valuable tool for both researchers and educators. 
Owing to this same lack of expressive fluency, novice learners may know more about the 
system than they are able to express via standard summative assessment modalities like 
written tests. If the embedded assessment can be automated, additional learning supports 
like ongoing diagnosis, an oft-ignored feature of dynamic scaffolding (Puntambekar & 
Hubscher, 2005), become possible. Fortunately, the field of ecology has a long history of 
developing quantitative spatial analytic techniques (Dale, 2004), techniques which can be 
automated, and techniques which we can borrow to characterize the spatial properties of 
learners’ intermediate solutions to spatial problems. 

To assist with this research, we developed software that applies a particular 
spatial analytic technique, a variance-stabilized version of the Ripley’s K spatial statistic, 
called the L function (Dale, 2004), to the spatial patterns co-constructed by learners. This 
statistic allows us to characterize a property of the intermediate spatial solution of 
learners that is particularly relevant to our problem space: the degree of relative 



dispersion of elements within a two-dimensional map of a region of land. This paper 
describes how this spatial dispersion statistic can be combined with other quantitative 
spatial descriptors to detect and characterizechanges in the spatial problem-solving 
strategies of learners. 

2. Learning Scenario 
When conducting urban planning, especially “green” urban planning, one must be aware 
of and sensitive to the spatial arrangements of elements belonging to both human and 
natural systems. Examples of natural elements might include specific animal habitats, the 
levels of elevation of the ground, or the distribution of soil types within a region. 
Examples of human elements might include roads, sewer systems, or the location of 
homes and other buildings. The placement and arrangements of these elements can have 
consequences for outcomes like flooding and groundwater infiltration. Sensitivity to such 
placements, and their emergent effects, is in keeping with the incorporation of systems 
thinking into recent redesign of the College Board’s Standards for College Success 
(College Board, 2009), which are used to shape Advanced Placement tests and courses 
like AP Environmental Science. 

Spatial Challenges in Green Infrastructure Planning 
Green infrastructure planning requires that the planner be especially sensitive to 

the relative locations of both human and natural system elements. Green infrastructure is 
defined as "an interconnected network of green spaces that conserves natural ecosystem 
values and functions and provides associated benefits to human populations" (Schilling & 
Logan, 2008). Green infrastructure often takes the form of vegetated swales, green roofs 
and cluster development that aim to minimize urban stormwater runoff and associated 
pollution by using and mimicking natural systems to collect, treat, and infiltrate rain 
where it falls (Schilling & Logan, 2008). This is an important issue because changes in 
land cover are dramatic, widespread, and rapidly increasing across the globe, resulting in 
environmental consequences like habitat alteration and changes in hydrology. Currently, 
over 5% of the surface of the United States is covered by urban and other built-up areas 
(Montalto, et al., 2007), and urban areas are projected to increase to 9.2% of total land 
surface in the next 25 years (Alig, Kline, & Lichtenstein, 2004). 

Creating swales is not cost-free, especially if land must be reclaimed from 
existing human-built structures like roads or parking lots. The trick to integrating swales 
into existing urban or exurban landscapes is thus to determine which locations will yield 
the highest benefits for both human systems (e.g., in terms of swale cost and reduction of 
problematic floodwater), and, ideally, for natural systems as well (e.g., in terms of the 
amount of rainwater that can be captured and converted to groundwater). Often, this is a 
tradeoff.  Grappling with this tradeoff is a “wicked problem” in the sense that there will 
never be one “correct” answer (Rittel & Webber, 1973).  Rather, learners are tasked with 
exploring a space of spatial arrangements of swales to discover a compromise between 
cost, flooding, and groundwater infiltration (Slattery, et al., 2012). 

What makes this task difficult is that the spatial scale and pattern of swale 
placement which may be ideal for improving one starting scenario may not be ideal for 
the other scenarios, owing to the differences in the spatial patterns of other elements. The 
reason why exposing learners to this spatial problem space is important is that many 



existing urban planning “best practices” don’t consider spatial interdependence and the 
resultant emergent outcomes. This can result in planning decisions that can have 
unintended outcomes or are so tokenistic that they may not even address the problem at 
all (as when the assumption is made that a green roof or two will compensate for acres of 
impermeable concrete). If learners are never asked to make explicit decisions about 
spatial placements of green infrastructure elements like swales, they will not have the 
opportunity to observe how different spatial patterns may drastically affect outcomes. 
Learners may come away from an environmental science course without any real 
understanding of how to productively grapple with real-world tradeoffs. 

 

 
Figure 1. Three participants collaborate to place green infrastructure swales on a 
map of an urban landscape using the tangible EcoCollage interface. The map is a 
large sheet of paper, and the swales are tiles bearing printed symbols that can be 
recognized by a computer vision system viewing the map from a ceiling-mounted 
web camera. The locations of the tiles are fed into an urban storm water 
management simulation. 

EcoCollage: a Tangible User Interface for Spatial Environmental Problem-Solving 
We have augmented an urban storm water management simulation developed for 

the Illinois EPA with a computer vision input system to support a paper-based Tangible 
User Interface (TUI). TUIs may confer special advantages for spatial problem-solving 
(Antle, Droumeva, & Ha, 2009), especially for collaborative settings, and our paper-
based approach is also designed to be cost- and time-effective for schools, as it allows 
students to interact with complex system simulations without requiring computer 
programming expertise or multiple computers. Rather, students solve environmental 
science problems through the hands-on placement of paper tiles (representing swales) on 
a large paper map (see Figure 1), which mimics authentic planning practice. The paper 
map is then read by a computer vision system and interpreted as input for the simulation 
(see Figure 2) so that students can test how each pattern affects the urban ecosystem. This 
vision system currently uses an inexpensive web camera mounted on the ceiling above 
the map, but a digital photo of the map would work just as well for supplying input to the 
simulation.  
 



 
Figure 2. Annotated screen shot of the urban storm water management simulation. 
It is adapted from a simulation developed for the Illinois EPA, using the NetLogo 
agent-based modeling software. The simulation depicts the effect of a 100-year 
rainstorm on a 20-block urban area, in terms of the amount of rainwater that either 
floods the landscape, infiltrates into the groundwater supply, or gets drained away 
by the storm sewer system. The aim for learners is to reduce flooding while 
increasing infiltration, and simultaneously keeping costs (associated with installing 
new swales) low. 

Learning Task 
Learners are asked to place swales (indicated by green squares in the simulation) 

on a map of an urban landscape (see Figure 2). The challenge given to them was to 
balance human concerns (the cost of the swales and the amount of flooding present in the 
map) against natural concerns (the amount of groundwater infiltration). Each swale cost a 
fixed amount, but the amount of flooding reduction and infiltration increase that each 
swale could accomplish was highly dependent on the swale’s placement. For example, 
although installing extra swales incurs additional cost (an undesirable outcome), users 
could increase the amount of infiltration (a desirable outcome) by clustering a number of 
swales together (essentially maximizing the return on swale cost). In another example, 
moving a swale from a location in the middle of a block to a location next to a sewer 
would result in a small decrease in infiltration (which is undesirable), but the flooding 
would decrease (a desirable outcome), as the swale would serve to trap surface water near 
the sewer, allowing a larger volume of water to drain into the sewer (sewer drainage 
occurs at a faster rate than infiltration). The task thus required that learners be sensitive to 
both univariate patterns (the location of swales vis-a-vis other swales) as well as to 
multivariate patterns (the location of swales vis-a-vis man-made infrastructure elements 
like impermeable road surfaces and sewers). Ideally learners would explore a number of 
these patterns, experimenting with placing swales close or far from one another and close 
or far from other map features.  

3. Spatial Research Challenge 
Assessing the progress learners made in apprehending and responding to spatial 

patterns requires that we first be able to characterize these patterns ourselves. We found 
that the ontologies of “spatial knowledge” that have been developed to describe how 
students learn geospatial concepts (e.g., Marsh, Golledge, & Battersby, 2007) were 
inadequate for characterizing the sophistication of such patterns, rooted as they are in 
traditions like geospatial mapping, and thus tending to be more concerned with defining 
paths and regions than distributions of elements across space. Moreover, because there is 



no one “right answer” to green infrastructure problems, the problem solving process is 
often more important for learning than arriving at the “correct” solution. So, then, we 
would like to ensure that learners experiment with a variety of characteristically different 
solutions. Traditional assessment methods might look at measures like time-on-task, 
transcriptions of the discussion, or scores on pre/post tests, and indeed these measures are 
of interest to us, but these measures say nothing about the exploration path taken by the 
learners. In our context, the exploration path consists of a series of spatial arrangements 
of swales on a map with pre-existing patterns of human and natural elements. This 
requires that learners exercise a specific component skill of visual reasoning where they 
attend to the relations between objects. This component skill of detecting object-object 
relations seems to be distinct from other classic forms of spatial reasoning skills, like 
dynamic transformations of objects (Hegarty, 2010), and from other types of visual 
reasoning like object visualization (Kozhevnikov, Kosslyn, & Shephard, 2005).  

To illustrate why we need to understand the exploration path of users, imagine a 
group that decides a priori that placing swales near low-lying areas is the best idea. They 
may iterate on this basic strategy, adding or removing a few swales here or there, but 
never deviate markedly from the basic idea. This approach to problem space exploration 
is known as “hill-climbing” strategy in artificial intelligence. In contrast, other learners 
might engage in what is known as a “random walk” strategy – trying out a series of 
wildly different spatial arrangements – an approach similar to when users slam slider bars 
from one end to another when exploring traditional simulations. But we know from 
research that slider-slammers, or “oscillators,” don’t necessarily build a good sense of 
how the simulated system works (Levy & Wilensky, 2005), since the extreme 
configurations tend to have so little in common in terms of outcomes. We also know from 
artificial intelligence that neither hill-climbing nor random-walk searches are guaranteed 
to converge on a satisfactory outcome, and further, we have good reasons to believe that 
neither strategy alone is effective for learning about the underlying system. Thus, things 
we might wish to track in learners include the breadth of their explorations, in other 
words, the sheer variety of different spatial patterns they explored, as well as the depth of 
their explorations, i.e., the number of “variations on a theme” of spatial arrangements that 
learners have explored. Being able to detect the exploration behaviors in learners is a first 
step towards confirming this suspicion that some kinds of exploration strategies may be 
more productive for (1) learning about spatially-mediated interactions between human 
and natural systems, and (2) for acquiring experience with negotiating compromise 
solutions, which is a disposition valuable for green infrastructure planning. Once that is 
known, we will also have the tools to be able to detect when learners seem to be on an 
exploration path unlikely to maximize learning, so we can then intervene and urge 
learners to consider a different exploration strategy. 

4. Key Methodological Decisions in Approaching the Spatial Research Challenge 
In order to track learners’ trajectory of spatial pattern exploration, we need some 

way of characterizing these spatial patterns. Fortunately, we have some tools that we can 
borrow from ecology: a number of ecologists make use of spatial statistics to better 
understand the spatial distribution of plants and animals within an ecosystem. In addition 
to more standard measures like abundance, there are an array of spatial analytic 
techniques for detecting spatial inter-relationships that can be used to characterize swale 



placement strategies (Dale, 2004). Some statistics can describe characteristics about the 
placement of organisms vis a vis each other, as when cacti grow in clumps of a certain 
proximity, or vis a vis other spatial elements, as when certain kinds of flowers tend to 
grow near certain kinds of trees. The next section explains how one such measure is 
calculated;  

Ripley’s L Estimate of Spatial Dispersion 
One common measure is known as Ripley’s K (Dixon, 2006), which, put crudely, 

indicates whether items are clumpy or spread out (i.e., “overdispersed”), relative to one 
another. The essential concept is a simple one: for a given radius, r, swept out from 
elements of interest (e.g., sewers), how unusual (given the overall density of elements on 
the map) is it to encounter elements of interest within an area of that size (either the same 
category, or another category of element entirely, e.g., swales):  
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K r( ) =∀i∈C1, j ∈C2
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λ1λ2A
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Where: 
• A is the area of the map 
• λ1 is the average density of points of that category C1 throughout the 

map (i.e., the total number of points in C1 divided by the total area of 
the map), and λ2 is the average density of points of that category C2 
• We iterate across elements i that belong to a primary category of 

interest C1 (which could be swales, or sewers) 
• For each i, we iterate across all elements, j, that belong to a secondary 

category of interest C2 (which in our case would be swales), where i 
and j are not the same element 
• wij is the proportion of the area of the circle of radius dij , the distance 

between centered at that exists inside the map (see Figure 3) 
• The indicator function I returns 1 if the distance between i and j (dij) is 

less than the radius r, 0 otherwise 
 



 
Figure 3. Illustration of how one estimates Ripley’s K for a given spatial distance (r). 
The map is divided into a grid and populated with two categories of elements (the 
grey and green squares). Iterating through one category (grey squares) one simply 

counts how many of the second category (green) are within distance r. The blue 
shading indicates the weighting (wij) one must perform. 

So with the Ripley’s K equation, we would expect that if the points of category C2 
were randomly distributed relative to category C1, we would expect the K value for a 
given spatial distance r to be equal to the area of a circle of size r. To allow us to more 
easily make judgments about whether a K value indicates overdispersion or clumping, we 
often make use of the Ripley’s L function, which transforms the K function relative to the 
radial area: 

€ 

L r( ) =
K(r)
π

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

 
With the Ripley’s L formulation, we know that if the C2 points are randomly 

distributed relative to category C1 , L(r) should equal r. Values of L(r) – r > 0 indicate 
that we are seeing more points of type C2 within radius r than we would expect, given 
chance, indicating that C2 is clumped relative to C1 at the spatial distance of r. Values of 
L(r) – r < 0 indicate that we are seeing fewer points of type C2 within radius r than we 
would expect, given chance, indicating that C2 is overdispersed relative to C1 at the 
spatial distance of r. 

Application of Ripley’s L Estimate to Our Problem Space 
With a spatial analytic approach, we are better able to characterize certain aspects of the 
spatial strategies being employed by users, and thus are able to track their progress in 
exploring the possible solution space. Specifically, the spatial dimensions we can track 
are along two axes: 
 



 
Figure 4. Illustration of the spatial properties that univariate and bivariate Ripley’s 

L estimates allow us to track. 

The following discussion presents some examples of how the Ripley’s L estimate 
may be used to characterize the univariate and bivariate distributions present in learner’s 
map arrangements. 

 
Figure 5. On the left is a 2D spatial pattern of items (e.g., swales, represented as 
green squares) where the individual items are clumped together in small groups. 

The right shows the Ripley’s L estimate (L(r) – r) for distances of 1 to 11. 

The univariate Ripley’s L-function analysis shown in Figure 5 indicates that for 
distances from 1 to 4, the swales are significantly clumped together (the grey lines on the 
L function graph indicate 99% confidence intervals). This should be expected, looking at 
the map, as each swale is within a radius of 4 of every other swale. By contrast, Figure 6 
shows the univariate Ripley’s L-function analysis of a map where, at certain spatial scales 
(distances of 2-5, and again at 8), the swales are significantly overdispersed relative to 
one another. The significant overdispersion at the distance of 8 owes to the regularity of 
the pattern: if each item is roughly 4 squares away from the others, we would expect to 
see overdispersion at radii that are multiples of 4: 8, 12, and so on. 

It should be noted that when items are overdispersed, they are not placed 
randomly (which would allow them to be arbitrarily close to one another), although 
people often confuse the two ideas. (When one asks a person to place items “randomly” 
they tend to create an overdispersed distribution, perhaps indicating an underlying 
misconception of what a random distribution is). Rather, the arrangement is more akin to 
the placements items take when they repel one another (e.g., magnets of opposing 
polarities).  



 
Figure 6.  On the left is a 2D spatial pattern of items (e.g., swales, represented as 
green squares) where the individual items are overdispersed. The right shows the 

Ripley’s L estimate for distances of 1 to 11. 

Thus far we have illustrated how Ripley’s L can be used to estimate univariate 
clumping/dispersion, as shown in Figure 5 and Figure 6, which indicates how items are 
placed relative to other items of the same kind. Ripley’s L can also be used to estimate 
bivariate clumping/dispersion, which occurs when you place items of one type near or far 
from items of a second type. Figure 7 shows a map that contains both swales (green) and 
sewers (dark grey). The univariate Ripley’s L estimate (top graph) shows that swales are 
clumped with each other at distances of 1-2. The bottom graph shows the result of the 
bivariate Ripley’s L estimate: how clumped/dispersed the swales (green) are with respect 
to the sewers (grey). One should note that the swales are significantly clumped vis a vis 
the sewers at a scale of 1-2, which we should expect from their close adjacency. 

 
Figure 7. On the left is a spatial pattern of two different categories of items: 

swales (green) and sewers (grey) The two graphs at right present the univariate 
Ripley’s L estimate (top) of swale-to-swale distribution, and the bivariate Ripley’s L 

estimate of how swales are distributed relative to sewers. 

The use of both univariate and bivariate Ripley’s L estimates allows us to 
disambiguate spatial patterns like that shown in Figure 7 from patterns like that shown in 



Figure 8. The univariate L-function is very similar to that shown in Figure 7, as the 
swales in both maps are significantly clumped at distances of 1-2. The bivariate Ripley’s 
L estimate shows us that for radii of 2-4 around sewers, however, swales are much less 
likely to be found than one would expect by chance. Moreover, once the radius is 
extended to a size of 7-8 around the sewers, one once again finds more swales than the 
overall density of swales might predict. Being able to detect differences between maps 
like those in Figure 7 and Figure 8 is meaningful in our spatial problem space, as 
proximity and distribution can play a role in how different elements interact to produce 
outcomes. For example – placing swales near sewers as in Figure 7 will decrease the 
amount of flooding experienced during a rainstorm at the expense of groundwater 
infiltration, while placing them in an overdispersed fashion vis a vis the sewers as in 
Figure 8 will increase infiltration at the expense of increased flooding. 

 

 
Figure 8. This map is an example of how both clumping and overdispersion can be 
present in the same arrangement.  The two graphs at right present the univariate 

Ripley’s L estimate (top) of swale-to-swale distribution, and the bivariate Ripley’s L 
estimate of how swales are distributed relative to sewers 

An attentive reader will have noticed that in the examples in Figures 5-8 we have 
calculated the Ripley’s L estimate for a number of radii – from 1 to 11 (typically, the 
largest radii one analyzed using Ripley’s L estimates is equal to half the size of the map, 
which in this case is 22). Unless we are interested in detecting a very specific distance 
between items, a univariate pattern cannot be described with a single L value – we must 
use an array of L values across a range of scales (r1, r2, r3, …rn), where n is the largest 
distance we might be interested in. So each map would be described with a tuple of n 
items. The univariate distribution of swales on the map presented in Figure 5 would be 
described by the following 11-tuple: 

 

€ 

LU = [1.8, 2.4, 2.2, 1.8, 0, 0, 0, 0, 0, 0, 0]  
  



Notice that the last 7 values are set to 0 – because these L-values lie inside the 
99% confidence intervals, they are statistically indistinguishable from a random 
dispersion. In other words, it cannot be said with confidence that the swales are either 
clumped or overdispersed at radii 5 – 11. The tuple can be simplified further because we 
don’t care overly much about the exact L-value estimate – just whether it is significantly 
clumped or significantly overdispersed, so we can replace positive values in the tuple 
(indicating clumping) with 1s, and negative values (indicating overdispersion) with -1s; 
here we show the substitution for Figure 5’s LU: 

 

€ 

LU = [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]  
 
For maps with multiple categories of interest, we will also need to compute 

bivariate Ripley’s L values, again, for all n radii of interest. So, to describe how swales 
are placed vis a vis sewers, we need to have an array of bivariate L values. Here we show 
the bivariate Ripley’s L tuple, LB, for in the map presented in Figure 8: 

 

€ 

LB = [0, -1, -1, -1, 0, 0, 1, 1, 0, 0, 0] 
 
If we are interested in both swale-swale placements and swale-sewer placements, 

a full spatial distribution description would require that we specify both the univariate 
and bivariate Ripley’s L estimates. LU and LB. For example, here is the full description for 
the map in Figure 8: 
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LU = [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]  

€ 

LB = [0, -1, -1, -1, 0, 0, 1, 1, 0, 0, 0] 
 
Once we have these descriptions, we can easily compare maps to see if they differ 

in terms of their univariate or bivariate spatial distributions. This can be useful both for 
comparing the spatial properties of different solutions, as well as performing step-by-step 
comparisons to determine if with each change to their maps learners are altering their 
strategies with respect to univariate or bivariate spatial placements. To compute the 
Spatial Dispersion Dissimilarity (SDD) across two maps, a and b, we need only to 
compute a variant of the Hamming distance across the tuples, where we normalize the 
value across the number of radii, r, used in the spatial dispersion computations: 
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SDD =
1
r

Lr
a − Lr

b

r
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So if we wanted to compare the map in Figure 8 to the map in Figure 7, the 

univariate SDD, SDDU, is: 
 

SDDU = (|1 – 1| + |1 – 1| + |0 – 0| + |0 – 0| + |0 – 0| + |0 – 0| +|0 – 0| + |0 – 0| + |0 – 0| + |0 – 0| + |0 – 0| ) / 11 
SDDU = 0 

 
While the bivariate SDD, SDDB, is: 
 



SDDB = (|1 – 0| + |1 + 1| + |0 + 1| + |0 + 1| + |0 – 0| + |0 – 0| +|0 – 1| + |0 – 1| + |0 – 0| + |0 – 0| + |0 – 0| )/11 
SDDB =  (1 + 2 + 1 + 1 + 0 + 0 + 1 + 1 + 0 + 0 + 0)/11 ≈ 0.64 

Augmenting Ripley’s L with Other Spatial Metrics 
The above illustrates how we can condense the comparison of the spatial 

dispersion patterns of two maps into a simple pair of numbers, one for the univariate 
Hamming distance between the maps’ Ripley’s L-estimates, SDDU, and one for the 
bivariate Hamming distance SDDB. Unfortunately, we still need more descriptors to 
better characterize the spatial similarities/dissimilarities of two maps. We run the risk of 
mis- or under-characterizing learners’ spatial reasoning strategies by only relying on 
SDD, as it speaks only to very specific kinds of spatial properties. To build a better 
characterization we need to add extra information, like the number of the swales used, as 
the Ripley’s L measure alone could lead us to inappropriately conclude two patterns are 
very similar, as in the example in Figure 9. 

 

 
Figure 9. Two maps with identical univariate Ripley’s L estimates but very 

different numbers of swales. 

Thus we also need to measure the difference in abundance of swales, AD. For our 
purposes, we want AD to be proportionally sensitive to changes in the count of swales, so 
we will not normalize over the size of the map, but rather, over the maximum number of 
swales in either of the two maps being compared. (The difference between 5 and 15 
swales should be “larger” than the difference between 35 and 45 swales). Assuming we 
have two maps a and b, each with N swales: 

€ 

AD =
Na − Nb

MAX(Na ,Nb )
 

 
The incorporation of AD will help us disambiguate some spatial strategies that 

gare indistinguishable by using Ripley’s L alone, but not all. Similarly, because Ripley’s L 
estimates are sensitive to relative, not absolute distance, two strategies might have the 
same L-tuple but actually represent very different spatial strategies, as shown in Figure 
10. 

  



 
Figure 10. Two maps with similar univariate Ripley’s L estimates and identical 

numbers of swales but different overall placements. 

There are many computational approaches to characterizing the difference in the 
exact placements, PD, between the two maps in Figure 10. For simplicity, we have 
decided to use once again a variation on the Hamming distance computation, called edit 
distance, to distinguish between such strategies. Imagine that a map of size h horizontal 
locations by v vertical locations. It can be described by an ordered list of h*v = n 
numbers, with each number representing the category of square present at each location. 
The edit distance is the sum of the squares in the first map’s ordered list, Ma, whose 
categorical numbers do not match their corresponding square in the second map’s ordered 
list, Mb. For Figure 10, the edit distance would be 18 (a way to think of it, visually, is to 
imagine lining the maps up on top of one another, and counting all the squares that are 
not the same on both maps). This can be normalized using the total number of swales 
used in each map, Na and Nb, so for Figure 10, the Placement Dissimilarity would be 1, 
indicating that no swales are placed in the same locations. The equation for PD: 

 

€ 

PD =
1

Na + Nb( )
Mi

a ≠ Mi
b( )

1≤i≤n
∑  

Examples of Analyses Made Possible with Spatial Metrics 
For our purposes, these four kinds of measures, the univariate and bivariate 

Spatial Dispersion Dissimilarities (SDDU, SDDB), the Abundance Dissimilarity (AD), and 
the Placement Dissimilarity (PD) are sufficient for detecting meaningful shifts in strategy 
in our problem space. This quantitative characterization of strategy has research benefits, 
in that it allows one to study how learner’s strategies change over time, and in turn to 
determine which strategic shifts or combinations of strategic shifts result in better 
solutions. There are pragmatic benefits as well. Because this method allows us to detect 
shifts in learner strategies automatically, in real-time, as learners interact with a spatial 
problem solving simulation, we can use that information to provide real-time guidance in 
a fashion not to dissimilar from cognitive tutoring software (e.g., Koedinger & Corbett, 
2006).  (Of course, as with cognitive tutors, a large database that characterizes productive 
versus unproductive solutions paths would first have to be compiled for each problem 
space, although some of this corpus, too, could be automatically generated).  

Here we turn to an example taken from our initial pilot study (Shelley, et al., 
2011; Slattery, et al., 2012), wherein we asked pairs of learners to try to generate an 
optimal solution to the green infrastructure rainwater management problem described 
above. A few caveats: in this pilot study, restrictions we had placed on where swales 



could be located meant that performing a univariate analysis of swale-swale placement 
would be uninformative, so we only used the SDDB, AD and PD spatial metrics.  We can 
now compare how one spatial map produced by learners compares to another along each 
of these four dimensions, to characterize what kinds of spatial strategies are dominating. 
For example, in Table 1 we show the SDDB, AD and PD comparison metrics across the 
seven different spatial arrangements tested by a dyad of participants. (Note that we used a 
threshold function to convert each of the fractional SDDB, AD and PD values into 
Boolean numbers, where 1 is indicative of a meaningfully large shift in that metric, and 0 
is indicative of only a small change in that particular spatial strategy. Each metric has its 
own threshold function, as what constitutes a meaningfully large difference can be small 
for some metrics and large for others. Each threshold is determined by the nature of the 
problem space). One can see that after testing the initial map, Map 1, the dyad made 
meaningfully large changes in both the number (AD) and placement (PD) of swales. No 
large shifts in strategy occurred between Maps 2 and 3, indicating that the dyad merely 
refined their Map 2 strategy. In shifting from Map 3 to Map 4, however, we detect 
meaningful shifts in both placement of the swales (PD) and in bivariate distribution of the 
swales relative to the sewers (SDDB). Towards the end of the episode, most of the 
strategic changes taking place concern the placement of the swales vis a vis the sewers.  

 
Table 1. Illustration of how a dyad in our pilot study shifted in strategy 

during an exercise where they iteratively generated and tested 7 spatial 
arrangements of swales. 

Map 
Comparison SDDB AD PD 

1-2 0 1 1 
2-3 0 0 0 
3-4 1 0 1 
4-5 0 0 1 
5-6 1 0 0 
6-7 1 0 0 

 
We can study other aspects of the learners’ problem solving as well. For example, 

if we wanted to determine if exploiting one strategy at the expense of the others (a hill-
climbing approach) is effective in our problem space, we can compute the proportion of 
map changes within a session that were dominated only by that strategy, and correlate 
that number with the maximum score obtained during a session, across all sessions with 
all participants. This in fact shows us that hill-climbing alone is not sufficient: neither the 
presence of SDDB hill-climbing, the presence of AD hill-climbing, nor PD hill-climbing 
correlates with scoring well (on either optimizing the cost of the green infrastructure or 
optimizing drainage of water). When one examines the presence of strategy shifts made 
in conjunction with one another (as occurs in the Map 1-2 and Map 3-4 shifts in Table 1) 
one does see significant correlation for some strategy combinations. In particular, when 
meaningful shifts in bivariate distribution are coincident with meaningful shifts in either 
AD (r = 0.55, df = 30, p < 0.01) or PD (r = 0.42, df = 30, p < 0.02), we see a significant 
positive correlation with the maximum cost-minimization score the dyad is able to obtain. 



This indicates that when the learners leverage an awareness of swale-to-sewer 
distributions when altering the number or placement of swales, groups are able to get the 
most “bang out of the buck” for each swale they place. Conversely, there is no correlation 
between coincident AD and PD shifts and the cost-minimization score (r = -0.08, df = 30, 
p = 0.66), which shows that learners must become aware of the importance of the 
placement of swales in relation to sewers. 

5. Advantages and Tradeoffs 
Using spatial metrics allows us to detect nuances in learner’s spatial reasoning 

that would otherwise be hard to disambiguate. For example, in prior attempts at using 
grounded coding to understand learners’ spatial reasoning we found that learners seldom 
explicitly stated their spatial strategies (Slattery, et al., 2012), so it was difficult to 
understand the path of their exploration. This technique allows us to quantifiably 
characterize their strategies, and shifts in strategies, in spatial terms. 

There are still limitations to this approach, however. For example, one might 
question the extent to which a change in the number of swales constitutes a “strategy 
shift” in its own right – when people conceive of strategies, they typically have a much 
richer way of characterizing their intentions. For example, many of the learners in our 
pilot study were observed to add more swales in response to dynamic outcomes from the 
prior map’s arrangement. In some cases, the dyads added extra swales in locations that 
exhibited puddling, a sort of “sponge” strategy. In other cases, dyads were observed to 
add swales in locations in strategic positions near where concentrated “streams” of water 
formed, a sort of “water diversion” strategy. Using our quantitative metrics, we can detect 
when learners make these changes, but we lose the nuance motivating the changes. 

The best way to think of this approach to quantitatively characterizing spatial 
problem solving is to view it as yet another tool that researchers can use to better 
understand learner intentions and actions. We plan not to use it as a stand-alone measure, 
but to combine it with the aforementioned dialogue analysis, and with a forthcoming 
gesture analysis we hope will reveal some of the ways learners are responding to the 
emergent dynamics of our problem space. 

6. Comparisons to Other Papers in the Session  

Paper 1: Making the Absent Present: Improvised Representational Fields in Students’ 
Negotiations of Meaning with GIS 
We share with Paper 1 an interest in studying how learners’ reasoning about spatial 
phenomena change over time. Although we did not track the gestures in this work we, 
too, witnessed a number of gestures being introduced and imitated as groups negotiated 
future actions and interpreted the reaction of the simulation to their actions. In our case, 
the representational field is partially defined for the learners, in that we provided a large 
paper map with tangible tokens which the learners used as a “stage” for their often 
gesture-rich discussions. 

We saw learners developing gestures for signaling the boundaries of areas of 
concern, such as where water pooled, and gestures that represented the dynamic 
properties of the simulation, like the paths and rate of water flow across the surface. The 
approach developed in Paper 1 may very well inform our next analysis. For example, it 
would be interesting to discover if learners who make gestures indicating that they are 



attending to the dynamic processes of the model explore characteristically different 
spatial configurations than those who do not make such gestures. We are interested in 
being able to detect dynamic thinking because while an understanding of dynamic 
processes is just as important a skill as predicting outcomes when it comes to solving 
environmental science problems, it is often under-stressed in environmental science 
curricula 

 Understanding of how dynamic processes unfold allows people to design and 
enact better amelioration strategies – by way of example, while predicting how much oil 
from an ocean spill will reach shore helps one judge how many oil-absorbing booms to 
use, understanding the currents that will bring the oil to shore allows one to decide where 
to place those booms to best effect. The unique value that complex system simulations 
can bring to environmental science education is that ability to witness and experiment 
with dynamic processes – and we are invested in developing methods to understand how 
learners perceive and respond to these dynamic processes so that we might stress this 
under-emphasized part of their education. 

Paper 2: Constructing Quartets: A Framework for Analysis in Musical Groups 
This paper developed techniques for detecting and studying the use of gestures used 
within a group performance to help negotiate and orchestrate individual performances. 
Our current setup does not demand “live”, performative coordination: our groups are free 
to negotiate and re-negotiate a spatial configuration until they have reached a static 
arrangement that suits them. Therefore there is not a lot of overlap between Paper 2 and 
ours, although one can imagine that if we were to adopt a “real-time”, as opposed to 
“turn-based”, style of interaction with the simulation, we too would need to attend to how 
the learners coordinated the orchestration of their spatial solutions. This kind of setup 
might be useful for environmental science problems that in fact demand more of a 
dynamic response, as in the oil spill example mentioned above. 

Paper 3: Map Performances: Expanding Spatial Thinking with Embodied Activity 
This paper also appears to be integrally related to performance, but in this case, where a 
single actor is orchestrating the interaction with and presentation of a multi-media 
geographically-referenced information. The discoveries the authors make concerning the 
types of gestures developed by the learners to illustrate spatial ideas that will likely 
inform the gesture analysis we wish to perform in future work (cf. Paper 1). 

Paper 5: Fostering Mathematical Discovery: One Tutor’s Strategies for Ushering the 
Construction of Proportional Schemas Via Mediated Embodied Interaction 
We share an overarching interest with Paper 5 in the “show and don’t tell” pedagogical 
approach of guiding learners towards perceiving certain spatial patterns, and Paper 5’s 
terming this guiding process “re-orientation” rather than “orientation” also suits our 
epistemological stance: we welcome and expect learners to approach the challenge from a 
number of possibly equally-valid perspectives, and in fact, we expect that any guidance 
we develop would lead learners through a series of re-orientations to different spatial 
patterns. Like Paper 5, our main entrée into the reasoning processes of our learners comes 
via an analysis of their actions, although in our case, we hope to offload the hard work of 
tracking student progress to the software through an automated detection of spatial 
patterns.  
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