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Abstract. Spatially explicit population models (SEPMs) are often considered the best way
to predict and manage species distributions in spatially heterogeneous landscapes. However,
they are computationally intensive and require extensive knowledge of species’ biology and
behavior, limiting their application in many cases. An alternative to SEPMs is graph theory,
which has minimal data requirements and efficient algorithms. Although only recently
introduced to landscape ecology, graph theory is well suited to ecological applications
concerned with connectivity or movement. This paper compares the performance of graph
theory to a SEPM in selecting important habitat patches for Wood Thrush (Hylocichla
mustelina) conservation. We use both models to identify habitat patches that act as population
sources and persistent patches and also use graph theory to identify patches that act as
stepping stones for dispersal. Correlations of patch rankings were very high between the two
models. In addition, graph theory offers the ability to identify patches that are very important
to habitat connectivity and thus long-term population persistence across the landscape. We
show that graph theory makes very similar predictions in most cases and in other cases offers
insight not available from the SEPM, and we conclude that graph theory is a suitable and
possibly preferable alternative to SEPMs for species conservation in heterogeneous
landscapes.
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INTRODUCTION

In fragmented landscapes, conservation of focal

species often involves the protection of land to maintain

the long-term health of the population of interest. The

protected land may consist of one or multiple habitat

patches that can be distributed over a large geographical

area and might be chosen for size, quality, and/or

connectivity attributes. Often, however, the spatial

location of reserve sites, and thus connectivity between

sites, is ignored. Here we present a method of site

prioritization that incorporates all three criteria and

requires only minimal computational capability and

knowledge of the focal species.

Reserve site selection has been approached in several

different ways. There are multiple site selection strate-

gies in the literature for conservation of biodiversity

(Moilanen and Cabeza 2002, Noss et al. 2002, Rothley et

al. 2004, Hess et al. 2006, Turner and Wilcove 2006),

although most of these are not spatial in nature. A more

sophisticated but more complicated alternative, usually

done for a single focal species, is a spatially explicit

population model (SEPM; Conroy et al. 1995, Dunning

et al. 1995b, Turner et al. 1995, South 1999). SEPMs

represent a landscape using patches or cells and

explicitly identify the location of every object of interest

(e.g., individual, population, cell, or habitat patch).

These common models can simulate birth, mortality,

and movement of individuals or populations and are

often considered the best means of predicting the

response of organisms to habitat change or other

broadscale landscape processes. However, their utility

is constrained by their computational and data require-

ments. Because they are very computationally intensive,

they are limited in both number of habitat patches and

individuals they can simulate. They also require

knowledge of species’ demographic parameters such as

mortality and fecundity rates, in addition to knowledge

of dispersal and other behaviors. These data are often

difficult to obtain and can include much uncertainty,

which can render the results unreliable. A third

alternative for site prioritization, which incorporates

connectivity, yet is valued for its computational ease and

minimal data requirements, is graph theory. Graph

theory has been used in other fields for years but has just

recently been proposed as a tool for predicting species

occurrences in fragmented habitats and highlighting

important patches for conservation (Keitt et al. 1997,

Bunn et al. 2000, Urban and Keitt 2001). However, it

remains to be seen whether graphs have the same
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predictive capabilities as a SEPM. The objective of this

paper is to compare the performance of a graph
theoretic model to that of a SEPM, using the Wood

Thrush (Hylocichla mustelina) in the North Carolina
Piedmont (USA) as a case study. We will identify

important patches for Wood Thrush conservation using
both models and compare the findings to determine

whether graph theory can be used as an easy and
practical alternative for reserve site selection.

METHODS

Study site and habitat maps

To establish robustness of results across different

scales and landscapes, we use two landscapes for this
analysis. Landscape 1 is a large-extent, course-grained

landscape (33 3 50 km) and landscape 2 is a small-
extent, fine-grained landscape (13 3 21 km) that is a

subsample of the first one (Fig. 1). They are both in
Wake County, North Carolina, USA, which is located in

the central piedmont region of North Carolina. A
classified LANDSAT Thematic Mapper satellite imag-

ery (30-m resolution) from May 2001 was used to
identify pixels of hardwood forest, and habitat patches
were defined as contiguous hardwood pixels using an

eight-neighbor rule. Landscape 1 includes only patches
larger than 50 ha and contains 126 patches. Landscape 2

falls within the northeast portion of landscape 1,
includes all hardwood patches larger than 5 ha, and

contains 172 patches. In both landscapes, we computed
the shortest distance to a non-forest edge for each

habitat pixel, which was used to calculate habitat quality
for the graph model and to calculate nest predation and

parasitism rates for the SEPM (Methods: Focal organ-
ism). (Note that while the final habitat maps are binary

[hardwood forest vs. everything else], habitat quality
was determined based on a multi-class landcover map.

Therefore, distance to non-forest is not necessarily
equivalent to distance to the edge of the patch, since

hardwood patches might be surrounded by pine or
mixed forest rather than a non-forest cover type.)

Although both of the landscapes have a large proportion
of forest cover, they are highly fragmented, and most

patches have a high edge-to-area ratio: the average
distance to a non-forest edge for all habitat patches was
58.5 m in landscape 1 and 48.2 m in landscape 2.

Focal organism

The Wood Thrush was selected as the focal species for
this study for several reasons. First, it is a well-studied

species and there are data in the literature for most of
the parameters needed in the SEPM. Second, it is a

Neotropical migrant, somewhat of a habitat specialist,
and a common host for the brood-parasitic Brown-

headed Cowbird (Molothrus ater) and so may be
especially sensitive to edge effects and forest fragmen-

tation (Roth et al. 1996). Finally, while Wood Thrushes
are fairly abundant across most of their range (the

eastern United States and southern Canada), they have

been declining in numbers over the past several decades

(Sauer et al. 2002) and so are of conservation interest.

However, while the Wood Thrush is a compelling

subject for this analysis, this is not meant to be an

evaluation of Wood Thrush ecology but rather an

illustration of a method that could be used with any

species.

It is thought that nest parasitism and predation are

major factors limiting the breeding success of Wood

Thrushes (Friesen et al. 1999, Burke and Nol 2000,

Fauth 2000), and these events tend to occur at higher

rates near forest edges (Paton 1994, Evans and Gates

1997, Chalfoun et al. 2002). Therefore, any habitat pixel

greater than 150 m away from a forest edge was

considered interior forest and the highest quality

habitat; habitat within 150 m of a forest edge was

considered lower quality and was assigned higher rates

of nest parasitism and predation in the SEPM. Due to

the high edge-to-area ratio of most of the patches, many

patches were entirely edge habitat (i.e., low quality) with

low reproductive potential.

There is very little information available in the

literature about dispersal distance of most songbirds,

including Wood Thrushes. However, the little data

available indicate that birds may routinely disperse one

or more kilometers away from natal territory (Anders et

al. 1998, Vega Rivera et al. 1998). Therefore, 1500 m was

deemed the maximum distance a dispersing Wood

Thrush is likely to travel in any one dispersal bout.

Selecting patches for conservation

In general, it is not feasible to obtain fine-resolution

data across an extensive landscape. This holds true for

conservation planning; managers rarely know the status

of the focal species on every habitat patch in their

jurisdiction. However, presence or abundance can be

predicted based on size, quality, and connectivity of the

patch. Many species have minimum patch size require-

ments, and larger patches often contain more individuals

(Åberg et al. 1995, Hoover et al. 1995, Matthysen 1999,

Mörtberg 2001). Quality of a patch affects density

and/or reproductive success of a species and might be

affected by vegetation type or proximity to human

development (Weinberg and Roth 1998, Ortega and

Capen 1999, Kristan 2003), among other things. Finally,

patches that are connected to other patches by dispersal

are more likely to be occupied than isolated patches

(Åberg et al. 1995, Dunning et al. 1995a). This is

especially true for smaller patches, which may period-

ically experience local extinction but can be recolonized

from neighboring patches if they are well connected.

Understanding these three patch attributes (size, quality,

and connectivity) is crucial to selecting habitat patches

for a protected area network.

Keeping size, quality, and connectivity in mind, there

are several kinds of patches that might be good

candidates for a reserve: sources, stepping stones, and

persistent patches. Sources, which are patches with more
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births than deaths and more emigrants than immigrants

(Pulliam 1988), are usually very desirable additions to a

reserve because they are unlikely to go extinct and can

sustain the populations of many surrounding patches

with their large reproductive output. Stepping stones are

patches that are important to connectivity; these are

desirable because they allow movement across the

landscape and can be critical for connecting source

patches to other smaller or lower quality patches. An

important stepping stone could be the single link

between different parts of the landscape, whose removal

would break the landscape into smaller, unconnected

sections (this is called a cut-node in graph terminology;

Methods: Graph theory). Finally, a persistent patch is

any patch that maintains a steady population through-

out time. A persistent patch could be small and very well

connected or simply large, since a very large patch can

usually sustain its population without any subsidy from

neighboring patches. (Note that these patch types are

not mutually exclusive.) A preference for one patch type

over the other in a reserve will depend on the landscape,

the focal species, and the conservation goals.

Graph theory

Graph theory (Harary 1969) has traditionally per-

tained to maximizing flow efficiency in networks or

circuits, and consequently has been applied in a variety

of disciplines such as information technology and

computer science. It also happens to be well suited to

ecological applications concerned with connectivity or

fluxes and has been used as a framework for food-web

theory in ecology (Dunne et al. 2002, Melian and

Bascompte 2002) However, it has only recently been

used in landscape and metapopulation ecology (Bunn et

al. 2000, Urban and Keitt 2001). A graph can represent

a landscape of discrete habitat patches as a set of nodes

(points) connected to some degree by edges between

them (Table 1, Fig. 2). An edge between two nodes

implies that there is some flux between those nodes, as in

the case of dispersal between two patches. A graph is

connected if a path exists between each pair of nodes or

FIG. 1. Landscape 1 (top left) and landscape 2 (inset). Circles of different sizes represent habitat patches of different sizes, and
lines between patches (edges) indicate that patches are connected by dispersal. Habitat quality increases from light to dark fill.
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if organisms can disperse among all the patches. An

unconnected graph may include several connected

components (e.g., Fig. 2).

There are minimal data requirements for a graph

analysis of any particular species and landscape. These

include knowledge of the habitat requirements and

maximum dispersal distance of the organism, and x, y

coordinates (and optionally, size and habitat quality) of

habitat patches. Unlike most SEPMs, graph theory does

not require knowledge of behavior, fecundity, or

mortality parameters. However, these data can be

incorporated when available and used to produce a

more ecologically rich model.

Computationally, a graph can be defined by two data

structures: one that describes its nodes (habitat patches)

and one that describes its edges (connections between

patches). Nodes are defined by their spatial centroid and

might also be described by other attributes such as size

or some measure of quality. For this analysis, nodes are

described by their quality-weighted area (QA), which is

TABLE 1. Definitions of graph terms.

Term Definition Ecological relevance Example

Betweenness The number of shortest paths that
cross through a node; the
frequency with which a node falls
between pairs of other nodes in the
network.

High betweenness implies linkages or
‘‘stepping stones’’ between subgroups.
These patches may control flow across
a network and be critical for
maintaining connectivity.

Nodes 5, 6, and 7 have
very high betweenness
(Fig. 2).

Component Nodes that are connected to each
other.

If patches are in the same component,
they are all mutually reachable. There
is no movement between different
components, which prevents a ‘‘rescue
effect’’ (emigrants from neighboring
populations reducing the probability
of local extinction; Brown and Kodric-
Brown 1977) and implies eventual
genetic divergence. Small components
may experience permanent extinction.

Fig. 2 shows two graph
components, one
consisting of nodes 1–11,
and the other of nodes
12 and 13.

Cut-node A node whose removal breaks a
single graph component into
several smaller ones. Cut-nodes
typically have high betweenness.

See betweenness. Nodes 5, 6, and 7 are cut-
nodes (Fig. 2).

Degree The number of edges adjoining a
node, i.e., the number of
neighbors joined to a node.

Small patches with low degree may be
vulnerable to extinction if their
neighbors are removed. Patches with
high degree are highly connected and
may be population sources or sinks,
depending on the size of patch and
direction of movement.

Node 2 has a degree of 4,
while node 3 has a
degree of 2 (Fig. 2).

Edge Indicates connectivity between nodes.
Edges may have direction
associated with them (called arcs)
and may have attributes assigned
to them (e.g., flux).

Shows dispersal between nodes.

Flux An edge attribute that indicates
amount of movement between
nodes. Flux from patch i to patch
j is calculated as the quality-
weighted area of patch i multiplied
by the probability of dispersal
between the two patches. Influx
and outflux sum up flux for all
incoming and outgoing edges,
respectively.

High flux between patches indicates a
large number of dispersing individuals
and thus a higher degree of genetic
similarity and a lower rate of patch
extinction. High influx indicates a
patch with a large number of
immigrants; this may or may not be a
‘‘sink’’ patch. High outflux indicates a
patch with a large number of
emigrants and is a ‘‘source’’ patch.

Node The basic element of a graph; the
object of interest.

In landscapes, habitat patches can be
represented by nodes.

Path A sequence of consecutive edges in
a network joining any two nodes.

Represents the possible routes an
individual may take while traveling
across the landscape.

There are multiple paths
between nodes 3 and 1:
some alternatives include
3!2!1, 3!4!2!1,
3!4!2!5!1. The
shortest path is 3!2!1.

QA (quality-
weighted
area)

A node characteristic equal to patch
size (in hectares) multiplied by
patch quality. Quality ranges from
0–1 and is defined by the average
distance to a non-forest edge for
every pixel in a habitat patch.

It is assumed to be related to
reproductive potential, in that patches
with higher QA produce more
offspring than patches with lower QA.
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simply patch size (in hectares) multiplied by patch

quality. Quality-weighted area is assumed to be related

to reproductive potential, in that patches with higher

QA produce more offspring than patches with lower

QA. Quality ranges from 0–1 and is defined by the

average distance to a non-forest edge for every pixel in a

habitat patch. Weighting area by quality ensures that

unsuitable patches (quality ¼ 0) have no reproductive

potential regardless of their size, while the highest

quality patches have the maximum reproductive poten-

tial for their size.

Graph edges can be defined in several different ways,

the most simple of which is based purely on distance

between nodes. Defining connectivity on distance alone

creates undirected graphs, which have symmetric rela-

tionships between nodes. In other words, if a species can

disperse from patch i to patch j, then equal dispersal

occurs from patch j to patch i. An alternative method is

to define edges based on dispersal flux between nodes, or

the relative number of individuals moving from one

patch to another, which results in directed graphs with

weighted edges. If patch i is larger than patch j, then flux

from patch i to patch j will be greater than flux from

patch j to patch i. A threshold flux value can then be

used to define edges, so that there may be an edge from

patch i to patch j but not one from patch j to patch i. To

infuse further biology into the graph, edges can also be

based on least-cost path distances or some other

behaviorally based estimate of connectivity between

patches (e.g., Bunn et al. 2000).

In this analysis, edges are defined based on distance

between patch boundaries, so that patches within 1500

m of each other (i.e., dispersal distance of the Wood

Thrush) are considered connected. Dispersal flux is also

calculated between each pair of patches connected by an

edge. Flux from a donor patch to a recipient patch is

calculated as the probability of dispersal between two

patches (Pij) multiplied by the reproductive potential

(QA) of the donor patch (Fluxij ¼ QAi 3 Pij). From

Urban and Keitt (2001), the probability of dispersal

between two patches i and j can be approximated as

negative exponential decay:

Pij ¼ expðh 3 dijÞ

where h is a distance-decay coefficient (h , 0.0) that

determines the steepness of the curve and dij is the

distance between the patches. The dispersal distance

corresponding to P ¼ 0.05 is equal to ln(0.05)/h, which
allows us to compute h given a known tail, or maximum

dispersal, distance for a species (in this case, the

maximum dispersal distance is assumed to be 1500 m

and h ¼�0.002).
Node degree is the number of edges connected to each

patch (Table 1). In-degree and out-degree can be

calculated separately, where in-degree is the number of

edges coming into a patch and out-degree is the number

of edges going out of a patch. These metrics may differ if

edges are defined purely on flux, but in this analysis

edges were defined based on distance and subsequently

assigned a flux value. Therefore, if there is an edge from

patch i to patch j there is also an edge from patch j to

patch i, although those edges are likely to have different

flux values. The result is that in-degree and out-degree

are equivalent in this analysis (hereafter simply called

‘‘degree’’).

Influx and outflux are similar to in-degree and out-

degree but sum up flux for all incoming and outgoing

edges, respectively, rather than just counting the number

of edges. Because flux is based on donor patch size (QA)

as well as distance between patches, influx is not

necessarily equivalent to outflux for any particular

patch.

Betweenness is a measure that describes the frequency

with which a patch falls between other pairs of patches

in the network. It is calculated by finding the shortest

paths between every pair of patches in the landscape,

then counting the number of times those paths cross

each node. Nodes with high betweenness are often

linkages or stepping stones between different parts of the

landscape. They may control flow through the network

and are very important for connectivity.

Graph theory analysis

We used the metrics described above (QA, degree,

influx, outflux, and betweenness) to identify patches that

are sources, stepping stones, or persistent patches for

Wood Thrushes. All graph metrics other than QA were

computed using Pajek 1.12 (Batagelj and Mrvar 1996), a

free program available for analyzing large networks.

Outflux approximates the source strength of a patch

by measuring emigration potential, while influx mea-

sures the immigration potential to a patch and should

predict a patch’s persistence. Two simple graph metrics,

QA and degree, may also be useful indicators of both

source strength and persistence. Source patches must

FIG. 2. An illustration of some basic graph terminology.
See Table 1 for explanations of numbers (column 4).
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have high QA as well as be connected to a large number
of patches, and persistent patches must either be self-

sustaining (i.e., have high QA) or be constantly
maintained by incoming migrants (i.e., be connected to

a large number of patches). Finally, a patch’s value as a
stepping stone can be indexed by betweenness.

The spatially explicit population model (SEPM)

The spatially explicit population model used in this
analysis (updated from Urban and Shugart 1986) was

mechanistic, stochastic, and individual based. It re-
quired the same landscape data as the graph model (x, y

coordinates of patch centroid, size [or carrying capacity]

of each patch, and distance between each patch), but
also required an additional nine parameters defining life

history traits of the Wood Thrush (Table 2). For this
analysis, we used two different initialization schemes.

The first one, random initialization, initiated a model
run by filling the landscape randomly with half of its

carrying capacity (determined by QA of the habitat
patches). For example, if the carrying capacity of the

landscape is 1000 birds, random initialization will place
500 birds randomly on the landscape (while not giving

any one patch more birds than its carrying capacity

allows). The second method, single patch initialization,
began by filling only one patch to carrying capacity and

leaving the others unoccupied. This was done individ-
ually for each patch on the landscape, with separate

model runs for each patch. After model initialization,
both versions proceeded the same way. Based on the

parameters in Table 2, the model simulated natality for

each bird, and offspring were created; then, mortality

occured, affecting the adults differently than the

juveniles. Average distance to non-forest edge (‘‘edgi-

ness’’) is used in this model as a way to modify natality

rates. Edginess is inversely and nonlinearly related to the

probability of nest success by a modified Weibull

function,

PðsuccessÞ ¼ b1 þ exp½ðd=b2Þ5�

where d is the average distance to an edge, b1 is the nest

success rate at the edge, b2 is the distance into the forest

that the edge extends (150 m in this case), and the

exponent 5 dictates the steepness of the curve. As a

result, patches vary in their predation and parasitism

rates based on their proximity to non-forested edges.

The next stage was dispersal: if a patch has more birds

than its carrying capacity allows, birds must disperse to

a nearby patch. Dispersal is a stochastic event based on

the size of the patches and the distance between them.

Juveniles have lower site fidelity than adults, so they

have a higher probability of dispersal. After dispersal, all

juveniles became adults and the model began the next

cycle; this can be repeated for as many years as desired.

The model usually reaches equilibrium (i.e., output stops

changing) in ;50 years for the random initialization

version of the model, but it takes much longer following

single-patch initialization. Fifty replicates were run for

each version of the model.

TABLE 2. Parameters used in SEPMs (spatially explicit population models).

Parameter Value References

Maximum nest parasitism rate 75% Donovan et al. (1995), Fauth (2001)
Maximum nest predation rate 65% Hoover et al. (1995), Brawn and Robinson (1996)
Annual adult survival 0.65 Powell et al. (2000), Roth et al. (1996)
Annual juvenile/floater survival 0.3 Anders et al. (1997)
Clutch size 2.5 eggs Trine (1998)
No. broods attempted annually 2 Roth et al. (1996)
Territory size 1 ha Twomey (1945), Weaver (1949)
Dispersal distance 1.5 km Anders et al. (1998)
Juvenile/floater site fidelity 0.10 Estimated data
Breeder site fidelity 0.90 Estimated data

TABLE 3. Output metrics from the SEPM.

SEPM output metrics Definition

BL (number of breeders on whole landscape) From the single-patch initialization version of the model, the
number of birds on the landscape after 100 years following
initialization from the focal patch.

BP (number of birds on each patch after 100 years) From the random initialization version of the model, the number of
birds on the focal patch after the model reaches equilibrium.

CV (coefficient of variation of patch population
over last 10 years of model run)

From the random initialization version of the model, the coefficient
of variation of the patch population in the last 10 years of model
runs.

YO (how many of the last 10 years the patch
was occupied)

From the random initialization version of the model, the number of
the last 10 years that the focal patch was occupied.

Source strength (rank BL þ rank BP)/2
Persistence (rank CV þ rank YO)/2
Overall goodness (source strength þ persistence)/2
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SEPM analysis

We used a variety of metrics from each initialization

scheme to identify patches that were sources, stepping

stones, or persistent patches (Table 3). From the random

initialization version of the model, we computed the

number of birds on each patch after 100 years (BP), how

many of the last 10 years the patch was occupied (YO),

and coefficient of variation (CV) of the patch population

over the last 10 years of the model run. We also used an

output metric from the single-patch initialization meth-

od to assess patch connectivity and ability to contribute

immigrants to the landscape: after 100 model runs

initiated from each patch, we totaled the number of

breeders on the whole landscape (BL).

A patch’s source strength was determined by com-

bining two metrics: BP, which indicates the size and

quality of a patch, and BL, which is an index of how well

the patch is connected to the rest of the landscape. We

ranked each patch according to its value of BP and BL

and then averaged the two ranks to determine a single

value of source strength. To measure a patch’s

persistence, we combined the metrics YO and CV by

ranking each patch according to YO and CV and

averaging the two ranks. The spatially explicit popula-

tion model does not provide an easy way to measure a

patch’s value as a stepping stone, so there is no metric

representing this aspect of site selection.

Model comparison

For each model (graph and SEPM), patches are

ranked according to their potential as a source, stepping

stone, and persistent patch. A correlation is then

computed for the rankings from each model. Often,

source strength and persistence are of equal value when

designing a reserve. Therefore, we also computed an

overall ‘‘goodness’’ metric for each model by averaging

influx and outflux ranks in the graph model and source

strength and persistence ranks from the SEPM. A rank

correlation between the measures of overall goodness

from each model was then computed.

RESULTS

The graph metric outflux was well correlated with the

SEPM metric for source strength (landscape 1, Spear-

man’s q¼0.86; landscape 2, q¼ 0.87; Tables 4 and 5). In

landscape 1, 7 of the 10 highest ranked patches for each

metric were the same; this increased to 8 out of 10 for

landscape 2 (Fig. 3). The variability in the relationship

between outflux and SEPM source strength is mostly

due to the relationship between outflux and the number

of breeders on the whole landscape (BL; Fig. 4). While

patches with large outflux consistently contributed a

large number of birds to the larger landscape (i.e., high

BL), patches with lower outflux were extremely variable;

some patches with fairly low outflux still managed to

TABLE 4. Spearman correlation coefficients between graph metrics and SEPM metrics for landscape 1.

Metric

Graph SEPM
Graph

goodnessOutflux Degree QA Betweenness Source strength Persistence

Graph

Influx 0.89 0.77 0.43 0.60 0.81 0.87
Outflux 0.83 0.66 0.69 0.86 0.79
Degree 0.53 0.78 0.75 0.68
QA 0.54 0.72 0.27
Betweenness 0.69 0.45

SEPM

Source strength 0.67

SEPM goodness 0.93

Note: All coefficients shown are significant at P ¼ 0.05.

TABLE 5. Spearman correlation coefficients between graph metrics and SEPM metrics for landscape 2.

Graph SEPM
Graph

goodnessOutflux Degree QA Betweenness Source strength Persistence

Graph

Influx 0.44 0.24 0.19 ns 0.52 0.73
Outflux 0.54 0.86 0.35 0.87 0.82
Degree 0.31 0.51 0.42 0.56
QA 0.37 0.84 0.54
Betweenness 0.31 0.23

SEPM

Source strength 0.76
SEPM goodness 0.93

Note: All coefficients shown are significant at P ¼ 0.05; ‘‘ns’’ indicates nonsignificant.
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contribute large numbers of birds to the landscape while

others contributed very few.

The graph metric influx was well correlated with the

SEPM metric for persistence (landscape 1, Spearman’s q
¼ 0.87; landscape 2, q¼ 0.73; Tables 4 and 5). However,

there was little overlap in the top 10 patches for either

landscape. In landscape 1, two of the 10 highest ranked

patches for each metric were the same; this increased to

4 out of 10 for landscape 2 (Fig. 5). The variability in the

relationship between influx and SEPM persistence was

mostly due to the relationship between influx and CV

(Fig. 6). While patches with small influx consistently had

a large amount of interannual variability in population

size, patches with large influx were not as consistent.

Some patches had large influx but high variability while

others had low variability.

In general, QA and degree were fairly good proxies

for source strength but not for persistence (Tables 4 and

5). The correlation between QA and the SEPM metric

for source strength was 0.72 for landscape 1 and 0.84 for

landscape 2. The correlation between degree and source

strength was 0.75 for landscape 1 and 0.42 landscape 2

(Spearman’s q used for all correlation data). SEPM

persistence had a weaker relationship with QA and
degree. The correlation between QA and persistence was

0.54 for landscape 1 and 0.27 for landscape 2. The

correlation between degree and persistence was 0.68 for

landscape 1 and 0.56 for landscape 2.

Finally, the measures of overall goodness from each
model were very highly correlated (landscape 1, Spear-

man’s q¼0.93; landscape 2, q¼0.93; Tables 4 and 5). In

landscape 1, 5 of the top 10 overall patches chosen for

the SEPM were also selected by the graph model (Fig.
7); in landscape 2, this increased to 8 out of 10.

In landscape 1, all patches with high betweenness are

in the large graph component (Fig. 8). In addition, many

of the patches scoring highest for betweenness are cut-
nodes (their removal would break the graph into smaller

components). In landscape 2, which was more connected

than the large landscape, the patches scoring highest for

betweenness would not be as easy to identify visually.
However, they tended to be patches that were centrally

located in the landscape.

DISCUSSION

While it is easy to assume that the SEPM provides

more biologically realistic output than the graph model

because of its level of complexity, it should be

recognized that with complexity comes potential for
huge error in model output. Therefore, it is important to

remember that without field data to test the models,

there is no way of knowing which one is actually more

accurate. However, the utility of SEPMs (despite the

FIG. 3. A comparison of graph outflux and the SEPM
metric ‘‘source strength.’’ The large landscape is shown in the
upper panel, and the small one in the lower panel. The top 10
patches for graph outflux are shown as dark circles, while the
top 10 patches for source strength are indicated by the large
circles. Patches that are both dark and large are in the top 10
for both models.

FIG. 4. Source strength (SEPM metric) vs. outflux (graph
metric) for the small landscape. Note that different sizes of
circles represent BL (the number of breeders on whole
landscape), which is an index of how well the patch is
connected to the rest of the landscape.
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potential for error) has generally been accepted and thus

the goal of this analysis was not to test whether the

graph model performs as well as the SEPM but whether

it performs similarly.

In general, the graph model does perform similarly to

the SEPM. Most of the graph metrics correspond well

with the SEPM metrics, and there is good overlap

between the important patches selected by each model.

Further, graph theory provides a way of identifying

stepping stone patches, which can be important addi-

tions to reserves but are not easily identified with a

SEPM.

The relationship between SEPM source strength and

graph outflux is reasonably strong, but outflux, by

definition, is limited in its ability to capture emigration

beyond immediate neighbors. In other words, patches

with small outflux can still contribute large numbers of

immigrants to the surrounding landscape in the SEPM

(i.e., have a high number of breeders on the whole

landscape [BL]). In particular, this might happen if a

patch were mid-sized and had only one neighbor (small

outflux), but that neighbor was a high-quality patch that

was connected to many other patches. In the single

patch initialization version of the SEPM, only one

immigrant from the original patch would need to reach

its high-quality neighbor and the number of birds on the

landscape could quickly increase. Whether or not that

mid-sized patch with only one neighbor would be a good

target for conservation is questionable, however. In-

stead, the high-quality neighbor might be a preferable

target and is also more likely to be identified as an

important patch by the graph model. It is possible that

running the single-patch initialization version of the

SEPM for 100 years overemphasizes the importance of

neighboring patches’ characteristics and that reducing

the length of the model run would provide a better

measure of source strength as well as correspond better

to graph outflux.

The relationship between SEPM persistence and

graph influx is also fairly strong for landscape 1 but

less so for landscape 2. Similar to outflux, influx is

limited in its ability to measure movement beyond that

from immediate neighbors. The SEPM measure of

persistence, however, is calculated from two metrics

that reflect more complicated dynamics than the number

of birds in a patch after 100 years (BP) and the number

of breeders on the whole landscape (BL): e.g., number of

the last 10 years occupied (YO) and interannual

variation in population size (CV). A plot of influx vs.

SEPM persistence (Fig. 6) shows that influx is not very

strongly associated with CV, while it is more strongly

associated with YO (data not shown). Patches with large

influx can either have large CV or small CV, implying

that CV may incorporate dynamics at a larger distance

FIG. 5. A comparison of graph influx and the SEPM metric
‘‘persistence.’’ The large landscape is shown in the upper panel,
and the small one in the lower panel. The top 10 patches for
graph influx are shown as dark circles, while the top 10 patches
for persistence are indicated by the large circles. Patches that
are both dark and large are in the top 10 for both models.

FIG. 6. Persistence (SEPM metric) vs. influx (graph metric)
for the small landscape. Note that different sizes of circles
represent CV, the coefficient of variation of the patch
population over the last 10 years of the model run.
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away from the focal patch. The map of persistence and

influx on landscape 1 (Fig. 5, top panel) shows an

interesting geographic trend: the top 10 patches for

influx are all in the upper left corner of the map, while

most of the best patches for persistence are in the lower

left corner. Another potentially useful graph metric is

the clustering coefficient (Newman 2001, Dunne et al.

2002), which indicates the degree to which a node’s (or

patch’s) neighbors tend to be near each other. A

clustering analysis in Pajek 1.12 (Batagelj and Mrvar

1996) revealed that patches in the lower left corner of the

map are highly clustered, meaning that they share many

neighbors with each other. In addition, landscape 2 is

more clustered than landscape 1 and influx is less

strongly related to persistence in landscape 2. Further

analysis is required before reaching any conclusions, but

high clustering may provide a patch with greater

population stability (and therefore be a better proxy

for persistence) than simply high influx.

Degree and quality-weighted area (QA) do not

contain enough information to be good proxies for

SEPM persistence and source strength: degree reveals

nothing about the size of the patch and QA reveals

nothing about its neighbors. However, it is interesting

that SEPM source strength is more strongly correlated

with both QA and degree than SEPM persistence. This

may reflect the complexity of the persistence metric and

the landscape dynamics that are related to CV and YO.

Overall graph and SEPM ‘‘goodness’’ are very highly

correlated. However, there is surprisingly little overlap

among the top 10 patches selected by each model for

landscape 1 (Fig. 7). Similar to influx, most of the

important patches for overall graph goodness are in the

top left portion of the map. These patches are among the

largest and highest quality patches in landscape 1, and

the graph metrics seem to be cuing in on this fact, while

the SEPM output may be reflecting larger scale

dynamics.

The betweenness metric identifies patches that are cut-

nodes in landscape 1, but it is not obvious why it

identifies some of the patches in landscape 2. Landscape

2 is much more highly connected than landscape 1 (mean

degree for landscape 1¼6.3, mean degree for landscape 2

¼ 17.6) and does not contain any cut-nodes. When there

FIG. 7. A comparison of overall graph ‘‘goodness’’ and
SEPM ‘‘goodness.’’ The large landscape is shown in the upper
panel, and the small one in the lower panel. The overall top 10
patches for the graph model are shown as dark circles, while the
overall top 10 patches for the SEPM are indicated by the large
circles. Patches that are both dark and large are in the top 10
for both models.

FIG. 8. Betweenness for the large landscape (top) and small
landscape (bottom). The size of the circles indicates value of
betweenness; large circles are important for network connec-
tivity.
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are multiple alternate paths across the landscape, as in

landscape 2, connectivity is not usually a big concern and

betweenness may not be a very useful metric.

The correlation between the graph model and the

SEPM remains strong across a range of parameter

values. While a thorough sensitivity analysis is beyond

the scope of this paper, preliminary analyses (data not

shown) indicate that the graph model is able to replicate

the SEPM results for dispersal distances ranging from

500 m to 3000 m, as well as for birds with increased

clutch size. However, when clutch size is reduced so that

population levels continuously decline in the SEPM, the

graph model output no longer corresponds to the SEPM

output. This suggests that graph theory may be most

suitable when a species’ distribution is limited by the

landscape rather than biological parameters.

Summary and future applications

This analysis has shown that graph models can closely

reproduce many of the results from a SEPM. In

particular, the graph metric outflux does a good job of

ranking and identifying patches according to their

source strength, and overall graph goodness is highly

correlated with overall SEPM goodness. The ability of

the graph metric influx to identify patches with high

persistence seems to vary according to landscape

characteristics such as connectivity. Preliminary analy-

ses suggest that patch clustering may increase patch

persistence without affecting influx, thus limiting the

correlation between influx and persistence. In general, it

seems that the SEPM is capable of capturing more

complicated and larger scale dynamics than the graph

metrics used here. However, it is important to remember

that the SEPM is not necessarily the gold standard by

which any other model should be measured, as the large

number of parameters has the potential to cause large

errors in model output. Discrepancies between the graph

model and the SEPM output should not be automati-

cally considered flaws in the graph model but rather

events worthy of further examination. Additionally,

there is a suite of additional graph metrics (not discussed

here) that may be equally or more useful for selecting

habitat patches for conservation. Therefore, we believe

that the benefits and ease of a graph theory analysis for

conservation planning outweigh any potential short-

comings.

Graph theory is an emerging conservation tool that

can be applied to a variety of taxa. For example, Bunn et

al. (2000) compared landscape graphs for two species

with similar habitat requirements but different dispersal

abilities. They showed that the Coastal Plain of North

Carolina is functionally connected for mink but

disconnected for the Prothonotary Warbler. More

recently, graph theory has been applied to marine

organisms as well. Treml et al. (in press) created marine

graphs for corals in the Tropical Pacific by estimating

connectivity between reefs based on ocean currents.

Patterns in these graphs revealed connected populations

and critical stepping stones, and they suggested areas

that might be prioritized for marine conservation efforts.

The potential for graph theory to be applied to other

organisms and landscapes is unlimited.

Graph theory in general, and the program Pajek in

particular, can also be used to analyze landscapes for

multiple species simultaneously, even for species with

different dispersal abilities. While this is beyond the

scope of this paper, it is possible to create separate

networks for each species and to combine them in a

variety of ways, depending on the question of interest.

Another use of graph theory in conservation planning is

the evaluation of networks as a whole, rather than the

focus on individual patches seen in this paper. Integra-

tive network properties, such as rates of movement and

vulnerability to disturbance, can be measured and

compared using techniques traditionally applied to

social sciences and other disciplines.
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