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A B S T R A C T

Spatially explicit population models (SEPMs) are often used in conservation planning. How-

ever, confidence intervals around predictions of spatially explicit population models can

greatly underestimate model uncertainty. This is partly because some sources of uncer-

tainty are not amenable to the classic methods of uncertainty analysis. Here, we present

a method that can be used to include multiple sources of uncertainty into more realistic

confidence intervals. To illustrate our approach, we use a case study of the wood thrush

(Hylocichla mustelina) in the fragmented forest of the North Carolina Piedmont. We examine

6 important sources of uncertainty in our spatially explicit population model: (1) the habitat

map, (2) the dispersal algorithm, (3) clutch size, (4) edge effects, (5) dispersal distance, and

(6) the intrinsic variability in our model. We found that uncertainty in the habitat map had

the largest effect on model output, but each of the six factors had a significant effect and

most had significant interactions with the other factors as well. We also found that our

method of incorporating multiple sources of uncertainty created much larger confidence

intervals than the projections that incorporated only sources of uncertainty included in

most spatially explicit population model predictions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Conservation scientists and practitioners often rely on spa-

tially explicit population models (SEPMs) to predict the re-

sponse of species to management schemes, assist with

reserve site selection, or guide reintroduction efforts (Liu

et al., 1995; Gerber and VanBlaricom, 2001; Carroll et al.,

2003; Kramer-Schadt et al., 2005; Pearson and Dawson, 2005;

Rushton et al., 2006; Schiegg et al., 2006; Vandel et al., 2006).

These complex models typically use patches or a lattice to

represent the landscape, identify the location of every object

of interest, and simulate birth, mortality, and dispersal at

the individual or population level (Dunning et al., 1995). In

an attempt to improve the realism of model output, modelers

sometimes fall prey to a natural inclination to increase the

number of explanatory variables and the complexity of these
er Ltd. All rights reserved
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models (Gardner and Urban, 2003). However, as models grow

in complexity, it becomes increasingly difficult to quantify the

various sources of uncertainty, which can cloud the interpre-

tation of model results. Even more importantly, model output

that does not include an estimate of uncertainty may invoke a

false sense of confidence, resulting in uninformed conserva-

tion decisions with potentially serious consequences.

There is a large literature on uncertainty analysis based in

a regression framework, in which parameter values are sam-

pled from their distributions, (e.g., Gardner et al., 1981; Gard-

ner, 1984; Haefner, 1996; Crosetto et al., 2000; reviewed by

Gardner and Urban, 2003), but all components of spatially ex-

plicit population models are not equally amenable to this pro-

cedure. Traditionally, the standard errors of the estimates of

model coefficients are used to constrain Monte Carlo methods

for assessing uncertainty (Gardner and Urban, 2003). In this,
.
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several replicate simulations are conducted, and in each sim-

ulation a different set of model parameters is selected ran-

domly from the joint distribution of parameters. The model

is then run with each parameter set, and model output (some

dependent variable selected for its diagnostic value) is re-

gressed on the input parameters. Sensitivity analysis is often

conducted in the same framework, except the range of varia-

tion for each parameter is constrained to be some fraction of

its nominal value (e.g., 10%) and Monte Carlo simulations are

run for a large number of slightly perturbed parameter sets.

By convention, a parameter’s uncertainty is indexed by the

amount of variation that its estimation error induces in the

output, while its sensitivity is indexed as its partial regression

slope (i.e., a sensitive parameter is one for which a small

change in the parameter elicits a large change in model out-

put). There are many examples of this type of analysis in

the literature (Crosetto and Tarantola, 2001; Cox et al., 2003;

Harmon et al., 2004), but this approach can be difficult to ap-

ply to several sources of data error that are common in spa-

tially explicit population models (e.g., habitat maps that

have different numbers of patches, or alternative algorithms

for animal dispersal. As a result, uncertainty in less tradi-

tional (although increasingly common) model inputs, such

as GIS habitat maps, have been largely ignored in terms of ef-

fect on spatially explicit population model output. What is

needed is a way to recast these and other, non-traditional,

sources of uncertainty so that they can fit into the Monte Car-

lo regression framework with which most modelers are

familiar.

In this paper, we demonstrate a way to extend the general

approach described above to a wide variety of sources of mod-

el error by simply relaxing the mechanics of the approach.

The ‘‘parameter sets’’ can then be drawn from a collection

of predefined alternatives including input maps, boundary

conditions, alternative model algorithms, and conventional

parameter values. To illustrate our approach, we use a case

study of the wood thrush (Hylocichla mustelina) in the frag-

mented forests of the North Carolina Piedmont. We examine

what we consider to be the 6 most likely sources of uncer-

tainty in our spatially explicit population model: (1) the habi-

tat map, (2) the dispersal algorithm, (3) clutch size, (4) edge

effects, (5) dispersal distance, and (6) the intrinsic variability

in our model. With little prior knowledge of their relative

importance, we selected these factors because they were of-

ten associated with great uncertainty in the literature and

they covered a range of sources to illustrate our approach.

The results highlight model components that need to be more

accurately calibrated to improve the utility of our spatially ex-

plicit population model, give a general indication of the reli-

ability of the model predictions, and identify trends that

may be meaningful to users of other models.
2. Methods

Our goal in this paper was to establish the importance of

incorporating diverse sources of uncertainty into model re-

sults and to illustrate an easy approach for doing so. To

accomplish this as simply as possible, we have selected six

key model factors and represented the uncertainty in each
one with just two alternative values or possibilities. Five of

these sources are model inputs representing aspects of avian

biology, and the sixth is the intrinsic model variability that

can affect any given parameter set. Of the five model inputs,

two of them (the habitat map and the dispersal algorithm) do

not fit obviously into the classical method of error analysis.

We do not include every model component in the uncertainty

analysis, nor do we explore every possible option for the mod-

el components we do include, although we acknowledge that

there are probably an infinite number of model components

and parameters we could have chosen to incorporate. This

is not to imply that other sources of model uncertainty are

unimportant, but attempting to include them all would only

complicate rather than clarify the case. However, this same

approach could easily be extended to explore any model in

greater detail, by first identifying the sources of uncertainty

that are of greatest concern and then ‘‘zooming in’’ and

exploring them in more depth.

2.1. The focal species

We used the wood thrush as the focal species for this study

for several reasons. First, it is a well-studied species and there

are data in the literature for most of the parameters needed in

the model. Second, it is a Neotropical migrant, somewhat of a

habitat specialist, and a common host for the brood-parasitic

brown-headed cowbird (Molothrus ater) and so may be espe-

cially sensitive to edge effects and forest fragmentation (Roth

et al., 1996). Finally, while wood thrushes are fairly abundant

across most of their range (the eastern US and southern Can-

ada), they have been declining in numbers over the past sev-

eral decades (Sauer et al., 2002) and so are of conservation

interest. However, while the wood thrush is a compelling sub-

ject for this analysis, this was not meant to be a evaluation of

wood thrush ecology but rather an illustration of a method

that could be used with any simulation model or species.

2.2. The model

We used a spatially explicit, individual-based model to simu-

late habitat use, fecundity, dispersal, and mortality of individ-

ual birds (updated from Urban and Shugart, 1986). The

spatially explicit population model (Fig. 1) simulates three

kinds of birds: adult breeders, adult floaters, and juveniles.

Breeders are adult birds with established territories, floaters

are adults without territories, and juveniles are birds in their

first year (also without territories). Juveniles and floaters do

not breed. The model was initialized by randomly filling the

landscape to half of its total carrying capacity with adult

breeders. Although these initial conditions are not necessarily

realistic, they are inconsequential because we subsequently

allowed the metapopulation to reach a stochastic equilib-

rium. Each breeder produces offspring at a rate dictated by

stochastic parameters such as clutch size, number of broods,

and nest predation and parasitism rates (Table 1). Following

reproduction, each individual has a probability of dying be-

fore the next time step, based on expected longevity. Adult

breeders have the lowest mortality and juveniles and adult

floaters have higher mortality (Table 1). If any habitat patch

still has more birds than the carrying capacity allows follow-



Initial population 

Mortality

Natality

Habitat map 

Dispersal

Fig. 1 – A flow diagram of the spatially explicit population

model.
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ing mortality, then dispersal will occur. Dispersal is a stochas-

tic event based on the size of the patches and the distance

and/or habitat between them (see below). Dispersal is the

product of two species life-history parameters: the maximum

distance that a bird will disperse in a single event (its range),

and the number of total times an individual will attempt to

disperse before settling (its mobility). If the bird reaches a

patch that has an available territory, it will settle. If it does

not, it will either become a floater or disperse to a new patch,

depending on whether it has reached its maximum number

of dispersal events. Juveniles and floaters have a much higher

probability of dispersal than breeders because breeders have

high site fidelity. This means that breeders tend to remain

in the same patches year after year. Once dispersal has oc-

curred, the juveniles become adults and the model begins an-

other cycle. At any given time, the population size of a single

patch is the sum of (a) surviving resident adults, (b) immigrat-
Table 1 – Model parameters

Parameter Range of values in
the literature

Value used

Nest parasitism rate 0–100% 75%

Nest predation rate 10–82% 65%

Edge distanceA 0–300 m 0 m, 20

Annual adult survival 0.58–0.71 .65

Juvenile/floater survival 0.29 .3

Clutch sizeA,B 1.9–3.7 eggs 2.5 egg

Number of broods attempted 1–4 2

Territory size 0.08–2.8 ha 1 ha

Dispersal distanceA 0.6–3.56 km 1.5 km

Juvenile/floater site fidelityC 0.5 0.10

Breeder site fidelityC 0.19–0.65 0.90

AParameters included in uncertainty analysis.
BEstimates of clutch size include parasitized nests.
CValues from the literature represent return rate of all individuals from

model includes only surviving individuals.
ing juveniles from other patches (or juveniles staying within

the natal patch), and (c) the number of juveniles leaving the

natal patch (dispersing). Floaters are not included in the pop-

ulation of any particular patch but are counted in the overall

landscape population. The output of the model includes total

population abundance, number of patches occupied on the

landscape, number of birds on each patch, and the number

of times each patch population goes extinct and becomes

re-colonized. The model can be used to predict species abun-

dance and potential for long-term persistence, as well as

which patches may play a particularly important role in over-

all landscape connectedness.

We began our simulations with a landscape in which each

habitat patch had a carrying capacity based on its size and the

territory size of the wood thrush. Each habitat patch also had

an ‘‘edge’’ value, calculated by averaging the distance between

each cell in the patch and the closest non-forest edge. This

metric incorporates patch shape, so that a compact patch

would have a lower edge value than an elongated patch of

the same size if both were surrounded by non-forest. We used

the average edge value because we cannot predict the exact

nesting location for each bird within a patch. This edge effect

(rate or probability) is inversely and nonlinearly related to

nest predation and parasitism rates by a modified Weibull

function:

pðdÞ ¼ b0 þ exp½ðd=b1Þb2� ð1Þ

where d is distance to an edge and the b’s are fitted constants,

with b1 being the functional distance of an edge (the extent of

edge effects). When edge effects are turned off, each habitat

patch in the landscape experiences nest predation and para-

sitism pressures equal to average rates for that particular spe-

cies. When edge effects are turned on, patches vary in their

predation and parasitism rates based on their proximity to

non-forested edges.

2.3. The habitat map

There are numerous sources of uncertainty involved in mak-

ing habitat maps (Scott et al., 2002), which often originate
in model Citation
(listed in same order as values)

Donovan et al. (1995) and Fauth (2001)

Hoover et al. (1995) and Brawn and Robinson (1996)

0 m Fauth (2000) and Brittingham and Temple (1983)

Powell et al. (2000) and Roth et al. (1996)

Anders et al. (1997) (data only for juveniles)

s, 3eggs Trine (1998) and Roth et al. (1996)

Roth et al. (1996)

Twomey (1945) and Weaver (1949)

, 3 km Anders et al. (1998)

Roth et al. (1996)

Robinson (1992) and Roth et al. (1996)

the previous year, whether they survived or not; value used in our



Table 2 – Land cover classification and composition for
the study area

Land cover
classification

Area
(ha)

% of total
landscape

Travel
cost

Sparse vegetation 18,152 36.6 2

Highly reflective/developed 14,461 29.2 5

Hardwood forest 9297 18.8 1

Pine forest 6647 13.4 1

Water 645 1.3 2

Mixed vegetation 354 0.7 1
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from satellite imagery and form the spatial template upon

which the population processes will play out. Most habitat

maps are based on field observations of species presence or

abundance, and such observations may be faulty or have

imprecise spatial locations (McKelvey and Noon, 2001). The

extrapolation of this information to a landscape, usually in

a GIS framework, creates additional uncertainties associated

with spatial imprecision and inaccuracy in base GIS layers

(e.g., digital elevation models, vegetation cover maps). In bin-

ary habitat maps (consisting of only habitat and non-habitat),

a somewhat arbitrary division must be drawn between what

is classified as habitat and non-habitat. This process inevita-

bly misclassifies some habitat as non-habitat and vice versa,

which can be especially true for very rare or common species.

In our case study, the spatially explicit population model

was run on a habitat map created from remote sensing imag-

ery of a 51,778 ha region in the Triangle area in the North Car-

olina Piedmont (Fig. 2). Classified land cover types were

created from Landsat TM images (30 m resolution) from May

1992 using a supervised, maximum-likelihood analysis in Er-

das Imagine, with training data points taken from high-reso-

lution aerial photographs. The image was classified into 6

discrete classes (Table 2). For forested pixels, the hardwood

basal area (m2/ha) of each pixel was calculated using a regres-

sion model that relates TM spectral characteristics with

deciduous and evergreen basal area from long-term monitor-

ing plots in the Duke Forest. A set of Duke Forest permanent
Fig. 2 – Satellite image of the study site in Raleigh, N
sample plots was used as training data, where the spectral

characteristics of the TM images (excluding band 6) were re-

gressed against the (log-transformed) total hardwood basal

area. Previous bird surveys done in the area (Das, 2000) were

used to determine the typical basal area of forest habitats

occupied by wood thrushes. In order to account for the uncer-

tainty involved in the process of creating habitat maps, we

used two different habitat threshold values to create maps

that bound the possibilities of wood thrush habitat require-

ments: 15 m2 ha�1 of hardwood forest for a ‘‘generous map’’,

and 20 m2 ha�1 of hardwood forest for a ‘‘strict map’’ (Fig. 3).

Any pixel that met these requirements was considered habi-

tat, and habitat cells were grouped into patches according to

an eight-neighbor rule. Only patches greater than 1 ha

(11 cells) were used because this is typically the smallest for-
orth Carolina (USA). Shaded areas are forested.



Fig. 3 – Contrasting maps of wood thrush habitat using strict and generous habitat classification thresholds. Red areas are

urban development, green areas are forested. Habitat patches are shown as black circles in the larger maps and simply

colored black in the close-up (smaller) maps.

960 B I O L O G I C A L C O N S E R V A T I O N 1 4 1 ( 2 0 0 8 ) 9 5 6 – 9 7 0
est patch occupied by wood thrushes (Roth et al., 1996). The

generous habitat map was made up of 823 discrete habitat

patches, together representing 3230 ha of viable habitat or

approximately 6% of the entire study area. The average patch

size was 4 ha (std. 6 ha). The strict habitat map contained

794 ha of wood thrush habitat in 306 discrete patches, which

made up 1.5% of the study area. Average patch size in the

strict habitat map was 2.5 ha (std. 3 ha). About 60% of the

patches in the strict map could only contain one breeding pair

(<2 ha), and about 48% of the patches in the generous map

could only contain one breeding pair. Distance-to-edge calcu-

lations between habitat maps (strict and generous) were sim-

ilar. The average distance to non-forest edge was 56.0 m

(±19.5 m, max distance of 151 m) and 52.9 m (±16.5 m, max

distance of 219 m) for the strict and generous map, respec-

tively. The use of ‘‘generous’’ and ‘‘strict’’ maps is a unique ap-

proach that allows us to account for the uncertainty of wood

thrush habitat preferences. We opted not to include the addi-

tional uncertainty of satellite image interpretation into our

analysis for simplicity’s sake, but there are several methods

available for assessing this kind of uncertainty (see discussion

above).
2.4. Dispersal models

Bird dispersal is a complex and somewhat mysterious phe-

nomenon that is modeled in many different ways in the liter-

ature. Do birds disperse when their habitat patch has reached
carrying capacity or before? How does dispersal affect mortal-

ity rates? How do birds move through non-preferred habitat?

All of these questions reflect differences in the way the dis-

persal algorithm of a spatially explicit population model can

be structured. This lack of understanding could lead to very

different implementations of dispersal in a model. At one le-

vel, a dispersal kernel may be used to define the probability of

dispersal between two patches as a function of between-

patch distance; in this case the choice of the form of the ker-

nel (negative-exponential? Gaussian?) invites model specifi-

cation errors. At another level, dispersal algorithms may

operate as some kind of constrained random walk (Gustafson

and Gardner, 1996) or a foray search strategy (Conradt et al.,

2003) in which individual birds ‘‘disperse’’ in search of avail-

able habitats. The term ‘‘dispersal algorithm’’ should not be

confused with ‘‘dispersal distance’’, which we discuss in the

following section. Although the distance traveled between

two habitat patches always depends on the dispersal algo-

rithm used, the reverse is not necessarily true: the algorithm

used can be completely independent of the distance between

any pair of patches.

In individual-based models that divide the landscape up

into patches, as our model does, dispersal is stochastically

modeled according to a set of probabilities of movement be-

tween patches. Our model includes two different methods

of determining these probabilities. The first uses a negative-

exponential function of nearest-neighbor (edge-to-edge) dis-

tance and patch size to estimate the probability of dispersal

from patch i to j:



Fig. 4 – A comparison of the inter-patch distance used in the Euclidean dispersal method (red line) and the least cost method

(black line). Habitat patches are shown in blue. Because the two patches of interest are separated by mostly developed land

(shown in red), the least cost method follows a rather convoluted path with the minimal travel cost.
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pij ¼ aj expð�hdijÞ ð2Þ

where h is an extinction coefficient estimated from the tail

distance at which pij = 0.01, and dij is the distance between

patches i and j. Here, aj is the area of the target patch and pro-

vides for a ‘‘target area’’ effect, which means that larger

patches are more likely to be destinations for dispersing birds.

This method of determining dispersal probabilities between

patches assumes that the inter-patch habitat is homogenous

and therefore traversability is the same for all intervening

habitat. As a result, dispersal distance between patches is

based on Euclidian distance between patches and patch size

only. The second dispersal mechanism uses a least-cost path

between each patch to calculate distance (Bunn et al., 2000).

In general, this method determines the minimum accumula-

tive ‘travel cost’ between every pair of patches. The cost of

travel across an individual cell in the non-habitat matrix is

based on the amount of effort it takes to cross the cell. This

effort, although subjective, allows the model to take into ef-

fect a flight preference of the birds. For example, it may be

reasonable to assume that a bird would more likely traverse

the matrix through wooded corridors, rather than flying in a

straight line (i.e., Euclidean distance) to a neighboring patch

through developed areas and across major highways. There-

fore, we assigned the following ad hoc cost values to the land

cover classes (higher cost = more difficult to cross): all for-
ested habitat has cost of 1, sparse vegetation and shallow

water has cost of 2, and highly reflective/developed has cost

of 5 (Table 2). In other words, it is 5 times more costly to cross

developed areas than it is to pass through preferred habitat.

The fact that we computed a least-cost path for every pair

of patches globally implies that the birds respond to interven-

ing patches as well as the surrounding habitat. Both habitat

patches and non-habitat forest patches (like those patches

that are below the 1 ha threshold) are assigned the lowest

cost (1); the underlying assumption is that the birds will fol-

low the ‘cheapest’ path, often traversing intervening habitat

patches and forested parcels in a stepping-stone manner

along the way. Implementing this least-cost path approach

within the dispersal sub-model effectively increases the tra-

vel distance between patches where the matrix is more devel-

oped and less desirable to the birds. This concept is shown

graphically in Fig. 4. The least-cost path distance (black) be-

tween these two patches is much greater than the Euclidean

distance (red) due to the highway and highly developed region

between these patches. It is this greater ‘travel cost’ that is

used in the least-cost path implementation, rather than the

closest Euclidean distance, again using Eq. (2). Note that this

approach essentially recasts a different dispersal logic into

the same model framework by reparameterizing the model.

The Euclidean and least-cost path dispersal methods are

not directly comparable, but this only emphasizes the impor-
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tance of our approach. We currently have no way of knowing

which of these equally viable methods to include in our mod-

el, and a traditional uncertainty analysis would not allow us

to include this kind of uncertainty. There are also many other

ways to compute dispersal paths, including a middle-ground

between our two choices: it would be possible (and perhaps

even biologically realistic) to calculate a Euclidean path where

a bird does incur risks (costs) depending on land cover but is

unable to alter course in response to the risks. However,

including every possible kind of dispersal model is beyond

the scope of this paper.
2.5. Model parameters

Clutch size, edge effects, and dispersal distance are the more

traditional sources of uncertainty in our analysis in that

there are discrete parameters defining them. Uncertainty in

parameters associated with life history characteristics (e.g.,

mortality, fecundity) is a common concern in the creation

and use of spatially explicit population models. Estimating

these life history parameters is a central goal of population

ecology, yet confidence in these values is often limited due

to the great difficulty in obtaining empirical data. Minimizing

errors in these parameters requires large sample sizes, and

is complicated by the natural variability of ecological sys-

tems. In some cases, uncertainty might be entirely due to er-

rors in observation, as in the case where a field estimate of

clutch size (eggs per nest) is used as a model parameter di-

rectly. In other cases, as in this case study, these parameter

values are selected from the literature. This presents a differ-

ent set of issues, since the field studies in the literature

might be completed in ecological and geographic settings

that are unlike the ones being modeled (Gardner and Urban,

2003). Even in well-studied species, there exists a wide range

of parameter values in the literature that exacerbates error

within the model.

The parameters used in this model were taken from the

literature (Table 1). Most of the values varied greatly from

study to study, but the most inconsistent results are of the ef-

fects of edges on nest predation and parasitism rates. Two re-

views of the effects of edge on nest predation even are in

disagreement about the very existence of edge effects (Paton,

1994; Lahti, 2001). Additional parameters with high uncer-

tainty are clutch size, which has a high variation in the liter-

ature, and dispersal distance, which is largely unknown.

Because edge effects and clutch size vary the most in the lit-

erature and dispersal distance has a high degree of uncer-

tainty, we varied these three factors in our spatially explicit

population model in order to explore the error associated

with our uncertainty of these parameters. We ran the model

with edge effects turned on and off and using two different

values each for clutch size (2.5 and 3 eggs per clutch) and

maximum dispersal distance (1500 m and 3000 m).
2.6. Intrinsic model variability

The intrinsic variability in our model incorporates an element

of chance into model parameters by drawing their values ran-

domly from some distribution. This can be used to represent
truly stochastic processes (e.g., mortality) as well as processes

not simulated explicitly (e.g., year-to-year variability in

weather affecting food resources, which in turn affect clutch

size; this might be modeled as stochastic variation in clutch

size). In spatially explicit population models, demographic

processes often are modeled as stochastic because the mod-

els operate on an individual basis. For example, each bird

either lives or dies each year, and only entire birds are fledged,

although the probabilities of these occurrences are not whole

numbers. Likewise, the model has dispersal probabilities [0,1]

for every habitat patch, but each bird disperses ultimately to

only one patch. For stochastic processes such as inter-annual

variability in weather as this might affect demographic rates,

ecologists commonly rely on variations of random number

generators. There is a fine line separating variation in a

parameter due to ‘‘natural variability’’ and variation due to

sampling error, but the implementation is essentially the

same. Separating the natural system variability from other

kinds of errors can be difficult but is important in the inter-

pretation of results. Typically, ecologists developing spatially

explicit population models will run a stochastic model multi-

ple times in Monte Carlo fashion in order to generate some

measure of this variability. For each individual bird, a series

of random numbers is drawn to determine the outcome of

stochastic events such as dispersal, mortality, and clutch size.

We included this intrinsic variability in our model by running

the model 100 times for each set of conditions.
2.7. Simulations and analyses

To quantify the uncertainty related to each of the above com-

ponents, we conducted a series of model simulations that

varied each model component in isolation and in combina-

tion with each other component in a full factorial design for

a total of 32 cases (Fig. 5). Each model simulation ran for

100 years to allow the population trend to proceed beyond

any transients induced by the initial conditions. Since the

model is stochastic, 100 replicates were performed for each

simulation and averaged. This resulted in a total of 3200 mod-

el runs. We analyzed the model results using two ANOVAs on

two response variables, considering separately the number of

birds on the landscape (using the log to stabilize the variance)

and the percent of carrying capacity occupied (using an arc-

sine-square root transformation). We considered both of

these response variables because the two habitat maps had

very different carrying capacities and thus populations could

not be compared directly. We also examined total model error

using a Monte Carlo approach in which we randomly selected

three replicates from each of the 32 cases described above. In

essence, by selecting the same number of replicates from

each scenario, we considered all scenarios to have the same

likelihood of being true, although this could easily be altered

if certain scenarios were considered more likely than others.

The median prediction of the model in any year is then sim-

ply the median response of all of the selected replicates, ex-

pressed as percent carrying capacity to make comparisons

between generous and strict maps possible. Similarly, confi-

dence intervals can be estimated by drawing out the appropri-

ate quantiles from the selected replicates.
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Fig. 5 – Diagram of all model simulations, to test for overall sensitivity in the spatially explicit population model. Note that

there are 32 different simulations and 100 replicates for each one, and thus a total of 3200 model runs. Numbers in

parentheses at the end of each branch reflect the average number of birds and the percent of the landscape carrying capacity

occupied at the end of that particular simulation.
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2.8. Patch level evaluation

To offer an additional viewpoint on model sensitivity, we also

considered a patch-level response variable in our analysis.

This was in contrast to the landscape-level response variables

that we have been considering to this point, which provide an

overall measure of population persistence but do not look at

the significance of specific habitat patches. Patch persistence,

defined here as the average number of years a patch is occu-

pied during the last 10 years of the model run (when a sto-

chastic equilibrium has been reached), is calculated for each

habitat patch on the landscape. This metric provides some

measure of the conservation value of a patch. For simplicity,

we used only two combinations of model factors in this anal-

ysis: holding everything else constant with a strict habitat

map, least-cost dispersal method, clutch size of 2.5 eggs,

and no edge effects, we looked at patch persistence under

two different dispersal distance scenarios (1500 m and

3000 m). This analysis provides a meaningful illustration of

the spatial distribution of model uncertainty rather than the

aggregate effect averaged over the entire study area.

3. Results

Because the model was initialized with the population at 50%

of carrying capacity, the number of birds on the landscape

had the potential to either increase or decrease as the simula-

tion proceeds, depending on the set of input factors. To illus-

trate a typical model run, we show the mean output from one

particular scenario as a time-series graph with 95% confi-
dence intervals (Fig. 6). The confidence intervals are produced

from the intrinsic model variability alone, by running the

model 100 times for one particular set of input factors. This

is often the only kind of uncertainty included in spatially ex-

plicit population model output. For this particular example (a

100 year model run with the generous habitat map, least-cost

dispersal method, 3000 m maximum dispersal, a clutch size

of 2.5, and edge effects on) the population increases fairly rap-

idly within the first 25 years, then reaches equilibrium and

levels out at about 1100 breeding birds (63% of carrying capac-

ity) on the landscape. This was a typical model run in that the

output did not change very much after the first 25 years.

Depending on the set of input variables, the bird popula-

tion at equilibrium ranged from less than 20% of carrying

capacity (<100 breeding birds remain when the model is run

on the strict landscape using 2.5 eggs per clutch, dispersal dis-

tance of 1500 m, and least cost dispersal method) to a land-

scape filled to 87% of carrying capacity (>1500 birds remain

in the landscape using the generous habitat map, 3 eggs per

clutch, dispersal distances of 3000 m, and Euclidean dispersal

method) (Fig. 5).

3.1. Model response to each source of uncertainty

Each factor in the ANOVA had a significant main effect on

population size as well as percent of carrying capacity occu-

pied, and most of the first-order interactions were significant

as well (Table 3). This significance is due, in part, to the large

sample size (100 replicate runs per parameter set), which

makes even relatively small effect sizes statistically signifi-
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Table 3 – Analysis of variance on the effects of each source of model uncertainty on population abundance

Source of variation Df Sum of sq. Mean sq. F value Pr (F)

Dispersal model 1 5.68 5.68 3476.25 0.00

Map 1 65.57 65.57 40150.67 0.00

Clutch size 1 60.44 60.44 37006.97 0.00

Dispersal distance 1 19.80 19.80 12121.84 0.00

Edge effects 1 1.28 1.28 786.29 0.00

Dispersal model · map 1 0.41 0.41 251.30 0.00

Dispersal model · clutch size 1 0.00 0.00 0.80 0.37

Dispersal model · dispersal distance 1 0.08 0.08 51.09 0.00

Dispersal model · edge effects 1 0.00 0.00 0.86 0.35

Map · clutch size 1 1.60 1.60 979.97 0.00

Map · dispersal distance 1 2.98 2.98 1827.02 0.00

Map · edge effects 1 0.06 0.06 34.09 0.00

Clutch size · dispersal distance 1 0.07 0.07 43.23 0.00

Clutch size · edge effects 1 0.27 0.27 166.55 0.00

Dispersal distance · edge effects 1 0.00 0.00 0.62 0.43
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cant. When considering total population size, the choice of

habitat map (strict vs. generous) had the largest effect on

model output (Fig. 7), followed by clutch size, maximum dis-

persal distance, the intrinsic model variability, the type of dis-

persal model, and lastly, edge effects. When considering

percent of carrying capacity occupied, the order of impor-

tance was the same except intrinsic model variability and dis-

persal distance switch rankings. The result is that habitat

map had the largest effect, followed by clutch size, intrinsic

model variability, dispersal distance, dispersal method, and

finally edge effects.
The effect of the habitat map was almost 3 times as impor-

tant as the other factors when considering total population

size, although only slightly more important than clutch size

and process error when considering the percent of carrying

capacity occupied on the landscape. The strict habitat map

resulted in lower total population numbers as well as a lower

portion of the habitat occupied than the generous map,

although the difference was greatest when comparing total

population size between the maps. Every other factor had a

significant interaction with habitat map as well. The differ-

ence between maps became larger when maximum dispersal
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for two different metrics when varying one factor and

holding the others constant.
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distance was decreased and when the least-cost path dis-

persal method was used.

The dispersal algorithm had the fifth largest (or next to

last) effect on model output. The least-cost path method of

dispersal consistently resulted in lower population numbers

and percent of carrying capacity occupied. This result was

magnified when using the strict habitat map. While statisti-

cally significant, these differences were relatively small.

Uncertainty in the life history parameters had varying de-

grees of importance to model output, depending on which

factor was being considered. Clutch size was the second most

important factor to model output. At 2.5 eggs per clutch, the

population size was greatly reduced. This difference was

most significant in the strict habitat map. Every other factor

except the dispersal method had a significant interaction

with clutch size, and these interaction effects were most

noticeable when generated on the strict habitat map. Dis-

persal distance had the third largest effect on total number
years since s
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Fig. 8 – Time series showing the mean, 50%, and 95% confidenc

output.
of breeding birds and fourth largest effect on percent of carry-

ing capacity occupied. Allotting the birds longer dispersal dis-

tances increased both total population size and percent of

carrying capacity occupied. When considering the percent

of carrying capacity occupied, this effect appeared to be more

pronounced in the strict map. However, when considering the

total population size, this effect was more pronounced in the

generous map. Dispersal distance showed significant interac-

tion terms with all other factors except edge effects. Edge ef-

fects, the final life history parameter we examined, had the

smallest effect on model output, although there was still a

statistical difference in the population with and without edge

effects. When the edge effects were turned on, both the total

population and the percent carrying capacity were consis-

tently, although only slightly, lower than when they were

turned off.

Intrinsic model variability had an intermediate effect on

model output. To obtain an estimate of this effect, we left

all input factors constant and examined the amount of vari-

ability generated by the stochastic processes alone. An idea

of how this uncertainty affected our prediction was obtained

from the 95% confidence intervals around the mean in Fig. 6.

The maximum variability due to this factor in any one simu-

lation was 249 birds or a 32% change in carrying capacity

occupied. However, simulations varied widely in the size of

their confidence interval, from 62 birds (for the simulation

with the strict map, Euclidean dispersal method, 3 eggs/

clutch, 3000 m maximum dispersal distance, and no edge ef-

fects) to 249 birds (for the simulation with the generous map,

Euclidean dispersal method, 2.5 eggs per clutch, 1500 m max-

imum dispersal distance, and edge effects on). The most

important input factor in determining the effect of the intrin-

sic model variability was clutch size. Holding everything else

constant, simulations with a clutch size of 2.5 eggs had a

smaller confidence interval than simulations with a clutch

size of 3 eggs, suggesting an interaction between these two

kinds of uncertainty.
tart of simulation

60 80 100

e intervals when including all sources of error in model
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Total model error was very large when all sources of error

were included in the analysis (Fig. 8). The 50% confidence

interval around the mean ranged from 0% to 75% of the carry-

ing capacity occupied, and the 95% confidence interval ranged

from 0% to 83%.

3.2. Patch-level evaluation

Patch persistence for each habitat patch was classified

according to the average number of years the patch was occu-

pied by a wood thrush in the last 10 years of the model sim-

ulations. We should point out that two patches with the

same persistence value are not necessarily equivalent. For

example, one patch may be occupied for five consecutive

years during a 10-year period (i.e., sustain a population for

an extended period of time), while another patch may be

occupied for five alternating years (i.e., not able to sustain a

population for more than one year). However, this metric still

provides a useful illustration of our methods. Under both dis-

persal distance scenarios (maximum dispersal of 1500 m and

3000 m), it was only the larger patches that were occupied

8–10 of the last 10 years (Fig. 9, red circles). When the maxi-

mum dispersal distance was 3000 m, all of the largest patches

and some of the smaller patches were occupied for 8–10 of the

last 10 years. However, when the maximum dispersal dis-

tance was 1500 m, several of the patches in the largest size

class were very rarely occupied (green circles). In the latter

case, whether or not a large patch was occupied appeared

to depend strongly on its location in the landscape. For exam-

ple, patches in the high-density southeastern corner tended

to remain occupied, while more isolated patches to the north

and west tended to be unoccupied more frequently. In fact,

for the shorter dispersal distance, only patches in the south-

eastern corner of the map were occupied for more than four
Fig. 9 – A comparison of patch persistence in simulations with 1

dispersal distance. Habitat patches are shown as circles; size of

equal to the average number of years the patch was occupied du

the strict map, least-cost dispersal method, 2.5 eggs/clutch, and
of the last 10 years. The remainder of the landscape con-

tained patches that were only rarely occupied. Additionally,

the majority of the patches in the smallest size classes were

completely unoccupied (white circles) with the shorter dis-

persal distance, but there were very few unoccupied patches

with the longer one.
4. Discussion

Every factor that we vary in our model has a significant effect

on the output. In addition, most interaction terms are also

significant. The range of output of the model is quite large

when taking all these uncertainties into account. While this

may be disconcerting, our results show that there are some

steps that can be taken to reduce model error as much as pos-

sible. Although every factor is significant, the majority of

overall model uncertainty is due to just a few factors (habitat

map and clutch size). The key to reducing model uncertainty

is to focus data collection efforts on those factors that are

most important to model output (Dunning et al., 1995). Fortu-

nately, the factors indicated by our model as most important

are relatively easy to measure; habitat requirements and

clutch size can be much more easily determined than dis-

persal behavior. These factors are also relatively easy for the

model user to modify, which is an important issue to con-

sider. Often, managers and conservationists are not modelers

themselves and will use a model that has been created by

someone else. In that case, it can be very difficult for them

to change algorithms that are internal to the model, such as

the dispersal algorithm. Changing the clutch size, however,

can be as easy as typing in one number. Nevertheless, it is

important to note that the relative importance of factors will

vary according to the focal species and landscape.
500 m maximum dispersal distance and 3000 m maximum

circle is relative to size of habitat patch. Patch persistence is

ring the last 10 years of the simulation. Both simulations use

edge effects turned off.
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4.1. The habitat map

The uncertainty in the habitat map is the largest source of er-

ror in our model. This finding should be stressed, since habi-

tat map uncertainty is rarely (if ever) included in spatially

explicit population model output. Several studies have looked

at the importance of a hypothetical habitat map on spatially

explicit model output (Ruckelshaus et al., 1997, 1999; Pulliam

et al., 1992), but to our knowledge, ours is the only study that

examines the uncertainty involved in an actual habitat classi-

fication into population estimates. Furthermore, our methods

allow model users to incorporate this uncertainty into their

predictions rather than make a choice about whether to use

the ‘‘strict’’ or ‘‘generous’’ map.

In contrast to our findings, Ruckelshaus et al. (1997, 1999)

found that dispersal factors were more important sources of

error than the habitat map, while Pulliam et al. (1992) found

that demographic parameters were more important than

the habitat map. These examples illuminate the difficulty in

generalizing results across studies: each study uses a differ-

ent model, considers different response variables, and exam-

ines different sources of uncertainty. A potentially useful rule

has been suggested by King and With (2002), who found that

spatial pattern in landscapes should only be important to pre-

dicting dispersal behavior when habitat abundance is less

than 40%.

In our case, the importance of the habitat map is a fairly

intuitive result because the two maps we generated differ

greatly in both the total amount of habitat and the arrange-

ment of habitat; increasing the amount of habitat on our

map also increased connectivity by bringing the patches clo-

ser together. While our methods do not allow us to determine

the relative importance of these two map components, they

do represent the reality that confronts scientists and manag-

ers attempting to define habitat for a species. In a real land-

scape, configuration is a fundamental attribute of the map

and habitat cannot be lost or gained without also changing

configuration. Partially as a result of this interaction, a small

difference in the threshold value of acceptable habitat (from

15 m2 ha�1 of hardwood forest to 20 m2 ha�1) results in large

differences in model output. In our model, the maximum dif-

ference between the two maps is a 40% change in percent car-

rying capacity occupied (Fig. 7), which means that not only

does the strict map result in much less available habitat (from

3230 ha to 794 ha), but also less of the available habitat is

filled. This can be attributed to the loss of connectivity de-

scribed above. Therefore, simulated dispersing birds are less

likely to locate suitable habitat patches, become floaters more

frequently, and have a higher mortality. This highlights the

capacity for model errors to propagate through other parts

of the model.

It is somewhat counter-intuitive that the average distance

to a non-forest edge is not very different between our two

maps. To understand this, we should note that many of the

habitat patches in both of our maps are embedded in a for-

ested matrix. Although that forest matrix may not be suitable

habitat, it does not qualify as edge in the way that we have

used the term (i.e., an edge is a forest/non-forest edge). This

is because most of the biological effects associated with edge

habitats are due to the introduction of nest predators or par-
asites from non-forested habitat to forested habitat (e.g.,

brown-headed cowbirds, many corvid species). The habitat

patches in the strict map are often a smaller portion of the

patches in the generous map, and therefore are not more

‘‘edgy’’ since they tend to be surrounded by forest. Clearly this

result could vary for landscapes with more non-forest habitat.

4.2. Dispersal models

Our uncertainty about the dispersal algorithm does not play a

large role in the total model uncertainty, although it still has a

significant effect. Using the least-cost path dispersal method

has a similar effect to using the strict map, in that it essen-

tially creates a landscape with larger between-patch dis-

tances. However, the least-cost path dispersal method is

expected to increase between-patch distance in a very local

manner. In particular, it should have a larger effect in areas

of high development. Connected patches (patches that are

within the maximum dispersal distance of a particular spe-

cies from each other) that are separated from each other by

areas of commercial development might become discon-

nected when using the least-cost path method, while two

patches separated by other land-cover types would not be af-

fected by changing the dispersal method. In general, chang-

ing the dispersal method does not have a large effect on the

total population in our landscape because most patches are

not very far apart from each other, even when using least-cost

paths. Therefore, the connectivity between patches does not

change very much. In a different landscape with patches sep-

arated by larger distances, or with a more inhospitable matrix

between patches, we would expect using the least-cost path

dispersal method to have a much larger effect. Other studies

have found mixed results about the importance of dispersal

behaviors (Wennergren et al., 1995; South, 1999), suggesting

again that the importance of dispersal and connectivity is

landscape specific and particularly might be important only

in landscapes near a critical threshold in habitat area (King

and With, 2002; Bender et al., 2003).

When considering the least-cost path dispersal method, the

dispersal cost each land cover type is assigned could have a

large effect on the model output. If we increased the dispersal

resistance of each non-forest cover type, this would increase

the least-costpath distance between patches, and the dispersal

method might become a more important factor in the model.

Furthermore, there is no reason to assume that the dispersal-

cost valueswe assigned land cover types are even relatively cor-

rect. For example, we decided that it was five times more costly

to cross developed areas than forested areas but only two times

more costly to cross through sparsevegetation (usually agricul-

tural fields) (Table 2). It is possible that the cost of crossing

developed areas and sparse vegetation could be equal, or even

that crossing sparse vegetation is actually more costly than

crossing developed areas. Field studies, such as those by St.

Clair (2003), could be used to parameterize these kinds of mod-

els more realistically in the future.

4.3. Model parameters

We found that the three sources of parameter error we exam-

ined varied considerably in their influence on overall model
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uncertainty. Clutch size was the second largest source of

uncertainty in our model. Every other factor except the dis-

persal method had a significant interaction with clutch size,

and these interaction effects were most noticeable when gen-

erated on the strict habitat map. Interactions between clutch

size and other model factors may not be intuitive at first. But

consider that increased clutch size can produce more birds on

a habitat patch than carrying capacity allows, while a reduced

clutch size may result in habitat patches occupied well below

carrying capacity. For example, when clutch size is high, a

longer dispersal distance would allow juveniles to reach far-

away habitat patches and settle down as breeders, but when

clutch size is low, birds would tend to remain in their natal

patch and the increased dispersal distance would not have

as large of an effect.

The large effect of clutch size on model output is logical,

since changing the clutch size is the most direct way to alter

the number of birds on the landscape. A sensitivity analysis

by Pulliam et al. (1992) also found demographic parameters

to be more important than dispersal ability, although they

found the greatest model sensitivity to survivorship. While

survivorship/mortality has been shown to be important in

other studies as well (Plissner and Haig, 2000; Wemmer

et al., 2001; Letcher et al., 1998), we did not vary this parame-

ter in our analysis because we examined clutch size instead.

Since the net recruitment rate is the difference between

natality (i.e., clutch size) and mortality, commensurate

changes in either of these have the same effect (Urban

et al., 1988).

It was surprising that edge effects had the smallest effect

on model output in our analysis. This may just be an artifact

of our particular landscape, since many of our patches are

small and not surrounded by non-forest edge, or of the way

that we implemented edge effects. It is also possible that

our estimates of nest predation and parasitism rates are

low, which could substantially influence results. To determine

if this is the case, it would be worthwhile to run additional

tests on the sensitivity of this parameter using different land-

scapes and values for nest predation and parasitism. While

ecologists have invested a lot of time and effort into the issue

of edge effects, if further tests do not reveal model sensitivity

it may be appropriate to focus conservation research onto

areas that have a larger impact on population dynamics.

Maximum dispersal distance is the third most important

source of error for total number of birds and the fourth most

important for percent of carrying capacity occupied. Increas-

ing the maximum dispersal distance increases the total pop-

ulation of birds because it creates a more connected

landscape and allows birds to reach patches that are farther

away. This is a similar effect to creating the generous map

or using the Euclidean dispersal method, although those

would all likely show spatial (patch-level) differences if not

overall differences in population numbers (or landscapes).

4.4. Intrinsic variability

Intrinsic model variability is probably the most common kind

of uncertainty included in spatially explicit population model

output. It is clear from this analysis that studies that include

only this uncertainty in their confidence intervals are overes-
timating the precision of their models. While this variability

has an intermediate effect on model output, that effect seems

to interact with other factors in the model. Simulations with

the larger clutch size also show a larger range in model output

from the intrinsic variability alone, suggesting that the vari-

ance increases with the mean.
4.5. Overall uncertainty

Our representation of ‘‘total error’’ (Fig. 8) is not a true esti-

mate of the total uncertainty in the model. On the one

hand, we generated this figure by randomly sampling over

the full range of cases simulated in model experiments. In

fact, we do have some opinion of the relative likelihoods

of many aspects of the model, and so could use these

expectations to constrain priors used to condition the Monte

Carlo simulations. This would reduce the total error in mod-

el predictions. On the other hand, in this exercise we have

not considered all of the model components and parameters

in our model. Furthermore, we might have considered a

wider range of alternative models or algorithms (e.g., dis-

persal models based on correlated random walks). Such

considerations would increase the total uncertainty in the

model. Indeed, because all models are simplifications of

reality, there is perhaps no upper limit to the amount of

uncertainty that could be propagated by adding yet one

more factor to any model

In our study, the amount of total model variability is huge

relative to the amount of intrinsic model variability, which is

typically all that is included in illustrations of model simula-

tions (viz., Fig. 8 versus Fig. 6). Importantly, much of this

uncertainty stems from sources that are not typically in-

cluded in a parametric uncertainty or sensitivity analysis

(Haefner, 1996), and these sources propagate and interact

through the model. For example, a decision about alternative

model formulations or algorithms implies corresponding is-

sues of estimating parameter values. In particular, errors in

the underlying habitat map affect the amount and pattern

of habitat, and so interact strongly with model components

and parameters associated with dispersal. This, in turn, im-

plies that errors in algorithms might have a locational bias

or be nonrandom across the study area. To assess this,

patch-level analysis is especially important.
4.6. Suggestions and summary

So what is a land manager or conservation practitioner to do

when faced with all these uncertainties? Should spatially

explicit population models be abandoned all together? We

do not advocate such a dramatic approach for most situa-

tions, because managers and conservationists may actually

have more knowledge about model input than we did in this

case study. For example, consider a preserve manager who

has been monitoring nest sites for years. In this case, habi-

tat map, clutch size, and edge effects would be well-known

for that location, although the dispersal distance and algo-

rithm would likely still be uncertain. However, the uncer-

tainties associated with the dispersal distance and

algorithm may be small enough to provide the manager
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with confidence in the model output. In situations where it

is less obvious which model factors contain the most uncer-

tainty, we would suggest an exploratory approach be used

(as we have shown here) to identify the factors with the

largest effect on model output. Data collection efforts can

then be focused on the factors that will reduce model uncer-

tainty the most.

Patch-level analysis can also be helpful when using a spa-

tially explicit population model to make conservation deci-

sions. As Fig. 9 illustrates, individual patch dynamics are

unequally affected by changes in model input. When there

is uncertainty in an important parameter and decisions must

be made about the conservation value of habitat patches, it is

useful to map the results spatially and locate patches that re-

tain their good quality regardless of model input (i.e., patches

that are insensitive to model input). The patch-level approach

can also be used to refine a spatially explicit population mod-

el and develop better parameter estimates. For example,

returning to Fig. 9, in order to determine whether or not the

maximum dispersal distance of the wood thrush was closer

to 1500 or 3000 m, it would be possible to go out to the field

and look for wood thrushes in the patches that are empty

(white) in the map of 1500 m dispersal but not in the map of

3000 m dispersal. If wood thrushes were found in those

patches, it might be reasonable to conclude that their maxi-

mum dispersal distance was closer to 3000 than 1500 m. Sim-

ilarly, a map of model discrepancies arising from varying

some other factor in the model would provide a facile tool

for isolating locations where these factors could be studied

effectively in the field.

In summary, we examined the effects of multiple kinds of

model error on the output of our spatially explicit population

model, and also took a spatially explicit look at the sensitivity

of one of these sources of error. Each factor that we varied had

a significant effect on our model output and most had signif-

icant interactions with the other factors as well. We chose to

test the sensitivity of factors that we felt were most uncer-

tain, but given infinite time and resources it would be possible

to include countless other sources of uncertainty in the anal-

ysis. While our results suggest that model uncertainty can be

reduced by developing better estimates of habitat map and

clutch size, it is important to recognize that these results

are specific to the landscape and focal species that we used.

Spatially explicit population models simulated on landscapes

with more habitat or different spatial configuration might dif-

fer greatly in their ranking of important factors to model

uncertainty (King and With, 2002; Bender et al., 2003). Our

analysis provides an estimate of the large amount of uncer-

tainty that goes into and comes out of most spatially explicit

population models, and it is important to note that much of

this uncertainty is usually unaccounted in spatially explicit

population model predictions. While the results we present

here are specific to our particular landscape and focal species,

it is probable that the habitat map will be of utmost impor-

tance to model output in other landscapes with sparse habi-

tat. This is especially significant because few, if any,

published studies include the effect of this uncertainty in spa-

tially explicit population model output. Fortunately, more

realistic model predictions can easily be produced by using

the methods presented here.
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